All IPs > Interface Controller & PHY
Interface Controller & PHY semiconductor IPs are integral components in modern digital systems that facilitate communication between various parts of an electronic system, including processors, memory, and peripherals. These IPs are designed to manage data traffic efficiently, ensuring reliable and high-speed data transfer between different interfaces and devices. This catalog features a wide range of IPs that serve various standard and custom interface protocols, making them indispensable for semiconductor companies developing complex SoCs (System on Chips) and digital systems.
In this category, you will find a selection of IPs tailored for popular interface protocols such as AMBA (AHB, APB, AXI), HDMI, PCI, USB, and MIPI, among others. Each IP solution is optimized for performance, supporting high-speed data transfer and reduced latency to meet the demanding needs of today's applications. These IPs not only provide seamless integration capabilities into your design but also ensure compliance with industry standards, which is crucial for interoperability in multi-vendor environments.
The embedded controllers within these IPs handle the logical functions necessary for device communication, while the PHY (physical layer) IPs manage the actual transmission and reception of data across physical media. Together, they enable efficient bridging between different communication protocols, making them critical components in a vast array of devices ranging from consumer electronics like smartphones and gaming consoles to industrial systems and automotive applications.
Our catalog also offers specialized solutions such as Multi-Protocol PHYs that support multiple standards within a single IP, providing flexibility and reducing the footprint for designs that require versatile connectivity options. By selecting the right Interface Controller & PHY IP from our catalog, developers can significantly enhance the functionality and overall performance of their products, leveraging the latest advancements in data interface technology. Explore our offerings and find the precise IP solutions needed to bring your innovative designs to life.
The KL730 is a third-generation AI chip that integrates advanced reconfigurable NPU architecture, delivering up to 8 TOPS of computing power. This cutting-edge technology enhances computational efficiency across a range of applications, including CNN and transformer networks, while minimizing DDR bandwidth requirements. The KL730 also boasts enhanced video processing capabilities, supporting 4K 60FPS outputs. With expertise spanning over a decade in ISP technology, the KL730 stands out with its noise reduction, wide dynamic range, fisheye correction, and low-light imaging performance. It caters to markets like intelligent security, autonomous vehicles, video conferencing, and industrial camera systems, among others.
Axelera AI's Metis AIPU PCIe AI Accelerator Card is engineered to deliver top-tier inference performance in AI tasks aimed at heavy computational loads. This PCIe card is designed with the industry’s highest standards, offering exceptional processing power packaged onto a versatile PCIe form factor, ideal for integration into various computing systems including workstations and servers.<br><br>Equipped with a quad-core Metis AI Processing Unit (AIPU), the card delivers unmatched capabilities for handling complex AI models and extensive data streams. It efficiently processes multiple camera inputs and supports independent parallel neural network operations, making it indispensable for dynamic fields such as industrial automation, surveillance, and high-performance computing.<br><br>The card's performance is significantly enhanced by the Voyager SDK, which facilitates a seamless AI model deployment experience, allowing developers to focus on model logic and innovation. It offers extensive compatibility with mainstream AI frameworks, ensuring flexibility and ease of integration across diverse use cases. With a power-efficient design, this PCIe AI Accelerator Card bridges the gap between traditional GPU solutions and today's advanced AI demands.
The Mixel MIPI C-PHY IP (MXL-CPHY) is a high-frequency, low-power, low cost, physical layer. (Learn more about Mixel’s MIPI ecosystem at Mixel MIPI Central which gives you access to Mixel’s best of class MIPI ecosystem supply chain partners.) The C-PHY configuration consists of up to three lane modules and is based on 3-Phase symbol encoding technology, delivering 2.28 bits per symbol over three-wire trios and targeting a maximum rate of 2.5 Gsps, 5.7Gbps. The C-PHY is partitioned into a digital module – CIL (Control and Interface Logic) and a mixed-signal module. The PHY IP is provided as a combination of soft IP views (RTL, and STA Constraints) for the digital module, and hard IP views (GDSII/CDL/LEF/LIB) for the mixed-signal module. This unique offering of both soft and hard IP permits architectural design flexibility and seamless implementation in customer-specific design flow. The CIL module interfaces with the protocol layer and determines the global operation of the module. The interface between the PHY and the protocol is using the PHY-Protocol Interface (PPI). The mixed-signal module includes high-speed signaling mode for fast-data traffic and low-power signaling mode for control purposes. During normal operation, a lane switches between low-power and high-speed mode. Bidirectional lanes can also switch communication direction. The change of operating mode or direction requires enabling and disabling of certain electrical functions. These enable and disable events do not cause glitches on the lines that would result in a detection of incorrect signal levels. All mode and direction changes are smooth to always ensure a proper detection of the line signals. Mixel’s C-PHY is a complete PHY, silicon-proven at multiple foundries and multiple nodes. It is built to support the MIPI Camera Serial Interface (CSI) and Display Serial Interface (DSI).
The "1G to 224G SerDes" solution from Alphawave Semi offers an extensive range of multi-standard connectivity IPs, designed to deliver optimal high-speed data transfer. These full-featured building blocks can be integrated into various chip designs, providing scalability and reliability across numerous protocols and standards. Supporting data rates from 1 Gbps to 224 Gbps, this SerDes solution accommodates diverse signaling schemes, including PAM2, PAM4, PAM6, and PAM8. Alphawave Semi's SerDes IP is engineered to meet the demands of modern communication systems, ensuring connectivity across a wide spectrum of applications. These include data centers, telecom networks, and advanced networking systems where high data transfer speeds are a necessity. This solution is crafted with energy efficiency in mind, helping reduce power consumption while maintaining a robust data connection. The SerDes solutions come equipped with advanced features like low latency and noise resilience, which are crucial for maintaining signal integrity over various transmission distances. This facilitates seamless integration into enterprises looking to boost their processing capabilities while minimizing downtime and operational inefficiencies. These capabilities make Alphawave Semi's SerDes IP a vital component in the evolving landscape of technology connectivity applications.
The Mixel MIPI C/D-PHY combo IP (MXL-CPHY-DPHY) is a high-frequency low-power, low cost, physical layer compliant with the MIPI® Alliance Standard for C-PHY and D-PHY. (Learn more about Mixel’s MIPI ecosystem at Mixel MIPI Central which gives you access to Mixel’s best of class MIPI ecosystem supply chain partners.) The PHY can be configured as a MIPI Master or MIPI Slave, supporting camera interface CSI-2 v1.2 or display interface DSI v1.3 applications in the D-PHY mode. It also supports camera interface CSI-2 v1.3 and display interface DSI-2 v1.0 applications in the C-PHY mode. The high-speed signals have a low voltage swing, while low-power signals have large swing. High-Speed functions are used for high-speed data traffic while low-power functions are mostly used for control. The C-PHY is based on 3-Phase symbol encoding technology, delivering 2.28 bits per symbol over three-wire trios, operating with a symbol rate range of 80 to 4500 Msps per lane, which is the equivalent of about 182.8 to 10260 Mbps per lane. The D-PHY supports a bit rate range of 80 to 1500 Mbps per Lane without deskew calibration, and up to 4500 Mbps with deskew calibration. The low-power mode and escape mode are the same in both the D-PHY and C-PHY modes. To minimize EMI, the drivers for low-power mode are slew-rate controlled and current limited. The data rate in low-power mode is 10 Mbps. For a fixed clock frequency, the available data capacity of a PHY configuration can be increased by using more lanes. Effective data throughput can be reduced by employing burst mode communication. Mixel’s C-PHY/D-PHY combo is a complete PHY, silicon-proven at multiple foundries and multiple nodes. The C/D-PHY is fully integrated and has analog circuitry, digital, and synthesizable logic.
Primesoc's PCIE GEn7 IP is dual mode controller , supporting upto 128Gbps per lane data rate , which can work as root complex or as an endpoint. This is a soft IP which can support serdes and non serdes architectures and PIPE interface of 64bit and lanes configurable from 1/2/4/8/16.
The GL3590-S is a USB 3.2 Gen 2 Hub Controller designed to provide seamless connectivity via integrated USB Type-C® support. This controller is capable of managing multiple upstream ports, making it ideal for complex data management tasks in modern electronics. Its sophisticated architecture allows for high-speed data transfer, ensuring efficiency in demanding computational environments. Integrated with USB 3.2 Gen 2 hub capabilities, the GL3590-S supports rapid data exchange rates essential for applications needing swift resolution and connectivity. The device plays a crucial role in amplifying the USB connection bandwidth, thereby enhancing the performance and reliability of connected devices. Moreover, this hub controller is equipped with advanced compatibility features, supporting various data transfer protocols. It aims to streamline the integration process across computing platforms, providing a robust solution for today's data-driven ecosystems.
Universal Chiplet Interconnect Express, or UCIe, is a forward-looking interconnect technology that enables high-speed data exchanges between various chiplets. Developed to support a modular approach in chip design, UCIe enhances flexibility and scalability, allowing manufacturers to tailor systems to specific needs by integrating multiple functions into a single package. The architecture of UCIe facilitates seamless data communication, crucial in achieving high-performance levels in integrated circuits. It is designed to support multiple configurations and implementations, ensuring compatibility across different designs and maximizing interoperability. UCIe is pivotal in advancing the chiplet strategy, which is becoming increasingly important as devices require more complex and diverse functionalities. By enabling efficient and quick interchip communication, UCIe supports innovation in the semiconductor field, paving the way for the development of highly efficient and sophisticated systems.
The Yitian 710 Processor is a groundbreaking component in processor technology, designed with cutting-edge architecture to enhance computational efficiency. This processor is tailored for cloud-native environments, offering robust support for high-demand computing tasks. It is engineered to deliver significant improvements in performance, making it an ideal choice for data centers aiming to optimize their processing power and energy efficiency. With its advanced features, the Yitian 710 stands at the forefront of processor innovation, ensuring seamless integration with diverse technology platforms and enhancing the overall computing experience across industries.
The AI Camera Module from Altek is a versatile, high-performance component designed to meet the increasing demand for smart vision solutions. This module features a rich integration of imaging lens design and combines both hardware and software capacities to create a seamless operational experience. Its design is reinforced by Altek's deep collaboration with leading global brands, ensuring a top-tier product capable of handling diverse market requirements. Equipped to cater to AI and IoT interplays, the module delivers outstanding capabilities that align with the expectations for high-resolution imaging, making it suitable for edge computing applications. The AI Camera Module ensures that end-user diversity is meaningfully addressed, offering customization in device functionality which supports advanced processing requirements such as 2K and 4K video quality. This module showcases Altek's prowess in providing comprehensive, all-in-one camera solutions which leverage sophisticated imaging and rapid processing to handle challenging conditions and demands. The AI Camera's technical blueprint supports complex AI algorithms, enhancing not just image quality but also the device's interactive capacity through facial recognition and image tracking technology.
The Aries fgOTN processor family is engineered according to the ITU-T G.709.20 fgOTN standard. This line of processors handles a variety of signals, including E1/T1, FE/GE, and STM1/STM4, effectively monitoring and managing alarms and performance metrics. Aries processors excel at fine-grain traffic aggregation, efficiently channeling fgODUflex traffic across OTN lines to support Ethernet, SDH, PDH client services. Their capacity to map signals to fgODUflex containers, which are then multiplexed into higher order OTN signals, demonstrates their versatility and efficiency. By allowing cascaded configurations with other Aries devices or Apodis processors, Aries products optimize traffic routes through OTN infrastructures, positioning them as essential components in optical networking and next-generation access scenarios.
Silicon Creations' SerDes Interfaces are crafted to handle high-speed data transmission challenges over varied processes, ranging from 12nm to 180nm. Addressing multiple protocols such as CPRI, PCIe, and SATA, these interfaces demonstrate flexibility by supporting data transmission speeds from 100 Mbps to beyond 32 Gbps. The architecture incorporates a host of advanced features including adaptive equalization techniques and programmable de-serialization widths, making it stand out in terms of performance and signal integrity even under challenging conditions. With ultra-low latency PMAs, they sustain excellent operational speed and efficiency, imperative for sophisticated communication applications. Moreover, Silicon Creations partners with leading entities to provide comprehensive solutions, including complete PCIe PHY integrations. This synergy ensures that SerDes Interfaces are fully optimized for operational excellence, delivering stable and reliable communication signals. With an emphasis on low power and minimized area requirements, they cater to burgeoning industry needs for power-efficient and space-conservative designs.
The Mixel MIPI D-PHY IP (MXL-DPHY) is a high-frequency low-power, low cost, source-synchronous, physical layer compliant with the MIPI® Alliance Standard for D-PHY. (Learn more about Mixel’s MIPI ecosystem at Mixel MIPI Central which gives you access to Mixel’s best of class MIPI ecosystem supply chain partners.) Although primarily used for connecting cameras and display devices to a core processor, this MIPI PHY can also be used for many other applications. It is used in a master-slave configuration, where high-speed signals have a low voltage swing, and low-power signals have large swing. High-speed functions are used for high-speed data traffic while low-power functions are mostly used for control. The D-PHY is partitioned into a Digital Module – CIL (Control and Interface Logic) and a Mixed Signal Module. It is provided as a combination of Soft IP views (RTL, and STA Constraints) for Digital Module, and Hard IP views (GDSII/CDL/LEF/LIB) for the Mixed Signal Module. This unique offering of Soft and Hard IP permits architectural design flexibility and seamless implementation in customer-specific design flow. The CIL module interfaces with the protocol layer and determines the global operation of the lane module. The interface between the D-PHY and the protocol is called the PHY-Protocol Interface (PPI). During normal operation, the data lane switches between low-power mode and high-speed mode. Bidirectional lanes can also switch communication direction. The change of operating mode or direction requires enabling and disabling certain electrical functions. These enable and disable events do not cause glitches on the lines that would otherwise result in detections of incorrect signal levels. Therefore, all mode and direction changes occur smoothly, ensuring proper detection of the line signals. Mixel’s D-PHY is a complete PHY, silicon-proven at multiple foundries and multiple nodes. This MIPI PHY is fully integrated and has analog circuitry, digital, and synthesizable logic. Our D-PHY is built to support the MIPI Camera Serial Interface (CSI) and Display Serial Interface (DSI) using the PHY Protocol Interface (PPI). Mixel has provided this IP in many different configurations to accommodate different applications. The Universal Lane configuration can be used to support any allowed use-case, while other configurations are optimized for many different use cases such as Transmit only, Receive only, DSI, CSI, TX+ and RX+. Both TX+ and RX+ configurations support full-speed loopback operation without the extra area associated with a universal lane configuration.
iWave Global introduces the ARINC 818 Switch, a pivotal component in the management and routing of video data within avionics systems. Designed for applications that require efficient video data distribution and management, the switch is optimized for performance in environments with stringent data handling requirements. The switch's architecture supports a high level of bandwidth, allowing for the smooth routing of multiple video streams in real-time. Its design includes advanced features that ensure low-latency, error-free data transfer, integral to maintaining the integrity and reliability of video data in critical applications. Featuring robust interoperability characteristics, the ARINC 818 Switch easily integrates into existing systems, facilitating modular expansion and adaptability to new technological standards. It is indispensable for any aerospace project that involves complex video data management, providing a stable platform for video data routing and switching.
Quadric's Chimera GPNPU is an adaptable processor core designed to respond efficiently to the demand for AI-driven computations across multiple application domains. Offering up to 864 TOPS, this licensable core seamlessly integrates into system-on-chip designs needing robust inference performance. By maintaining compatibility with all forms of AI models, including cutting-edge large language models and vision transformers, it ensures long-term viability and adaptability to emerging AI methodologies. Unlike conventional architectures, the Chimera GPNPU excels by permitting complete workload management within a singular execution environment, which is vital in avoiding the cumbersome and resource-intensive partitioning of tasks seen in heterogeneous processor setups. By facilitating a unified execution of matrix, vector, and control code, the Chimera platform elevates software development ease, and substantially improves code maintainability and debugging processes. In addition to high adaptability, the Chimera GPNPU capitalizes on Quadric's proprietary Compiler infrastructure, which allows developers to transition rapidly from model conception to execution. It transforms AI workflows by optimizing memory utilization and minimizing power expenditure through smart data storage strategies. As AI models grow increasingly complex, the Chimera GPNPU stands out for its foresight and capability to unify AI and DSP tasks under one adaptable and programmable platform.
Advanced Peripheral Bus (APB) is one of the Advanced Microcontroller Bus Architecture (AMBA) family protocols. It is a low-cost interface that is designed for low power consumption and interface simplicity. Unlike AHB, it is a non-pipelined protocol for connecting low-bandwidth peripherals. Mostly used to link external peripherals to the SOC. Every APB transfer requires at least two clock cycles (SETUP Cycle and ACCESS Cycle) to finish. The APB interface is designed for accessing the programmable control registers of peripheral devices. The APB protocol has two independent data buses, one for read data and one for write data. The buses can be 8, 16, or 32 bits wide. The read and write data buses must have the same width. Data transfers cannot occur concurrently because the read data and write data buses do not have their own individual handshake signals.
xcore.ai by XMOS is a groundbreaking solution designed to bring intelligent functionality to the forefront of semiconductor applications. It enables powerful real-time execution of AI, DSP, and control functionalities, all on a single, programmable chip. The flexibility of its architecture allows developers to integrate various computational tasks efficiently, making it a fitting choice for projects ranging from smart audio devices to automated industrial systems. With xcore.ai, XMOS provides the technology foundation necessary for swift deployment and scalable application across different sectors, delivering high performance in demanding environments.
The Metis AIPU M.2 Accelerator Module from Axelera AI provides an exceptional balance of performance and size, perfectly suited for edge AI applications. Designed for high-performance tasks, this module is powered by a single Metis AI Processing Unit (AIPU), which offers cutting-edge inference capabilities. With this M.2 card module, developers can easily integrate AI processing power into compact devices.<br><br>This module accommodates demanding AI workloads, enabling applications to perform complex computations with efficiency. Thanks to its low power consumption and versatile integration capabilities, it opens new possibilities for use in edge devices that require robust AI processing power. The Metis AIPU M.2 module supports a wide range of AI models and pipelines, facilitated by Axelera's Voyager SDK software platform which ensures seamless deployment and optimization of AI models.<br><br>The module's versatile design allows for streamlined concurrent multi-model processing, significantly boosting the device's AI capabilities without the need for external data centers. Additionally, it supports advanced quantization techniques, providing users with increased prediction accuracy for high-stakes applications.
The Mixel MIPI M-PHY (MXL-MPHY) is a high-frequency low-power, Physical Layer IP that supports the MIPI® Alliance Standard for M-PHY. (Learn more about Mixel’s MIPI ecosystem at Mixel MIPI Central which gives you access to Mixel’s best of class MIPI ecosystem supply chain partners.) The IP can be used as a physical layer for many applications, connecting flash memory-based storage, cameras and RF subsystems, and for providing chip-to-chip inter-processor communications (IPC). It supports MIPI UniPro and JEDEC Universal Flash Storage (UFS) standard. By using efficient BURST mode operation with scalable speeds, significant power savings can be obtained. Selection of signal slew rate and amplitude allows reduction of EMI/RFI, while maintaining low bit error rates.
The AHB-Lite APB4 Bridge serves as a crucial interconnect that facilitates communication between the AMBA 3 AHB-Lite and AMBA APB bus protocols. As a parameterized soft IP, it offers flexibility and adaptability in managing system interconnections, bridging the gap between high-speed and low-speed peripherals with efficiency. The bridge's architecture is designed to maintain data integrity while transferring information across different protocol tiers. This bridge supports the implementation of a seamless transition for data exchanges, ensuring data packets are transmitted with minimal latency. It is ideal for systems that require stable connectivity across multiple peripheral interfaces, delivering a cohesive platform for system designers to enhance operational uniformity. By enabling efficient bus conversion, it supports broader system architectures, contributing to the overall efficiency of embedded designs. With its open-architecture design, the AHB-Lite APB4 Bridge caters to a wide range of applications, providing necessary adaptability to meet the unique demands of each project. Its robust design ensures that it can accommodate the complex architectures of modern embedded systems, enhancing both performance and reliability.
AMBA AHB is a bus interface designed for high-performance synthesizable applications. It specifies the interface between components such as initiator , interconnects, and targets. AMBA AHB incorporates the features needed for high-performance, high clock frequency systems. The most common AHB targets are internal memory devices, external memory interfaces, and high-bandwidth peripherals.
The KL630 is a pioneering AI chipset featuring Kneron's latest NPU architecture, which is the first to support Int4 precision and transformer networks. This cutting-edge design ensures exceptional compute efficiency with minimal energy consumption, making it ideal for a wide array of applications. With an ARM Cortex A5 CPU at its core, the KL630 excels in computation while maintaining low energy expenditure. This SOC is designed to handle both high and low light conditions optimally and is perfectly suited for use in diverse edge AI devices, from security systems to expansive city and automotive networks.
Designed for real-time data streaming, the ARINC 818 Streaming IP Core provides efficient conversion from pixel buses into ARINC 818 formatted Fibre Channel streams, and vice versa. This core is optimized to handle complex data processing needs in aerospace applications. The ARINC 818 Streaming IP Core supports high-bandwidth operations, ensuring that video and other data streams are processed with minimal latency and maximum reliability. It provides a vital solution for applications requiring synchronized video and data distribution in challenging environments. Its capability to transform data into standardized ARINC 818 formats helps streamline system integration, enhancing the functionality and interoperability of various aerospace systems. This core is crucial for platforms that prioritize real-time image processing and fault-tolerant data communications.
RaiderChip's GenAI v1 is a pioneering hardware-based generative AI accelerator, designed to perform local inference at the Edge. This technology integrates optimally with on-premises servers and embedded devices, offering substantial benefits in privacy, performance, and energy efficiency over traditional hybrid AI solutions. The design of the GenAI v1 NPU streamlines the process of executing large language models by embedding them directly onto the hardware, eliminating the need for external components like CPUs or internet connections. With its ability to support complex models such as the Llama 3.2 with 4-bit quantization on LPDDR4 memory, the GenAI v1 achieves unprecedented efficiency in AI token processing, coupled with energy savings and reduced latency. What sets GenAI v1 apart is its scalability and cost-effectiveness, significantly outperforming competitive solutions such as Intel Gaudi 2, Nvidia's cloud GPUs, and Google's cloud TPUs in terms of memory efficiency. This solution maximizes the number of tokens generated per unit of memory bandwidth, thus addressing one of the primary limitations in generative AI workflow. Furthermore, the adept memory usage of GenAI v1 reduces the dependency on costly memory types like HBM, opening the door to more affordable alternatives without diminishing processing capabilities. With a target-agnostic approach, RaiderChip ensures the GenAI v1 can be adapted to various FPGAs and ASICs, offering configuration flexibility that allows users to balance performance with hardware costs. Its compatibility with a wide range of transformers-based models, including proprietary modifications, ensures GenAI v1's robust placement across sectors requiring high-speed processing, like finance, medical diagnostics, and autonomous systems. RaiderChip's innovation with GenAI v1 focuses on supporting both vanilla and quantized AI models, ensuring high computation speeds necessary for real-time applications without compromising accuracy. This capability underpins their strategic vision of enabling versatile and sustainable AI solutions across industries. By prioritizing integration ease and operational independence, RaiderChip provides a tangible edge in applying generative AI effectively and widely.
Ethernet MAC 10M/100M/1G/2.5G IP is a solution that enables the host to communicate data using the IEEE 802.3 standard for 10M, 100M, 1G, 2.5G speeds and is suited for use in networking equipment such as switches and routers. The Client-side interface for the IP is AXI-S and the Ethernet MAC IP comes with GMII, RGMII or MII interfaces on the PHY side. The Ethernet MAC 10M/100M/1G/2.5G IP features a compact and low latency solution, it is highly configurable and can optionally include IEEE 1588 Timestamping Unit (TSU). The Silicon agnostic Ethernet MAC IP, suitable for ASICs and FPGAs, is prepared for easy integration with Ethernet PCS 10M/ 100M/1G/2.5G IP from Comcores.
With a focus on maintaining signal integrity in high-speed interfaces, the PCIe Retimer extends the reach of PCI Express connections while preserving data quality. Essential for long signal paths, it works by regenerating signals to boost performance and provide reliable connections across distances. The retimer is particularly effective in environments with substantial electromagnetic interference, ensuring data transmission remains error-free and efficient across extended cable runs. By including line equalization and using advanced clock recovery techniques, the PCIe Retimer strengthens signal quality, allowing for greater system performance and reliability in a wide array of computing applications.
The ARINC 818 Product Suite is a comprehensive solution designed for professionals working with advanced avionics systems. It provides a robust framework for implementing, testing, and simulating ARINC 818 systems. The product suite includes a variety of tools and resources tailored for the lifecycle of ARINC 818 systems, ensuring that clients can develop mission-critical systems with confidence. With a primary focus on performance and scalability, the ARINC 818 Product Suite is developed to cater to complex requirements and to seamlessly integrate within existing technology stacks. Users benefit from its extensive compatibility and the ability to manage high-speed data effectively, making it a vital asset for those working in aviation and defense sectors.
The GenAI v1-Q from RaiderChip brings forth a specialized focus on quantized AI operations, reducing memory requirements significantly while maintaining impressive precision and speed. This innovative accelerator is engineered to execute large language models in real-time, utilizing advanced quantization techniques such as Q4_K and Q5_K, thereby enhancing AI inference efficiency especially in memory-constrained environments. By offering a 276% boost in processing speed alongside a 75% reduction in memory footprint, GenAI v1-Q empowers developers to integrate advanced AI capabilities into smaller, less powerful devices without sacrificing operational quality. This makes it particularly advantageous for applications demanding swift response times and low latency, including real-time translation, autonomous navigation, and responsive customer interactions. The GenAI v1-Q diverges from conventional AI solutions by functioning independently, free from external network or cloud auxiliaries. Its design harmonizes superior computational performance with scalability, allowing seamless adaptation across variegated hardware platforms including FPGAs and ASIC implementations. This flexibility is crucial for tailoring performance parameters like model scale, inference velocity, and power consumption to meet exacting user specifications effectively. RaiderChip's GenAI v1-Q addresses crucial AI industry needs with its ability to manage multiple transformer-based models and confidential data securely on-premises. This opens doors for its application in sensitive areas such as defense, healthcare, and financial services, where confidentiality and rapid processing are paramount. With GenAI v1-Q, RaiderChip underscores its commitment to advancing AI solutions that are both environmentally sustainable and economically viable.
The NuLink Die-to-Die PHY for Standard Packaging by Eliyan offers an innovative solution for high-performance interconnects between die on the same package. This technology significantly boosts bandwidth and energy efficiency, using industry-standard organic/laminate substrates to simplify design and reduce costs. It leverages a unique implementation that negates the need for more expensive silicon interposers or silicon bridges while maintaining exceptional signal integrity and compact form factors. With conventional bump pitches ranging from 100um to 130um, these PHY units support various industry standards such as UCIe, BoW, UMI, and SBD, delivering a versatile platform suitable for a wide array of applications. This flexibility ensures it meets the rigorous demands of data-centric and performance-oriented computing needs, with optimal performance observed at advanced process nodes like 5nm and below. Eliyan's NuLink PHY further breaks technological barriers by delivering synchronous unidirectional and bidirectional communication capabilities, achieving data rates up to 64 Gbps. Its design supports 32 transmission and receiving lanes to ensure robust data management in complex systems, making it an ideal solution for today's and future's data-heavy applications.
TTTech's Time-Triggered Ethernet (TTEthernet) is a breakthrough communication technology that combines the reliability of traditional Ethernet with the precision of time-triggered protocols. Designed to meet stringent safety requirements, this IP is fundamental in environments where fail-safe operations are absolute, such as human spaceflight, nuclear facilities, and other high-risk settings. TTEthernet integrates seamlessly with existing Ethernet infrastructure while providing deterministic control over data transmission times, allowing for real-time application support. Its primary advantage lies in supporting triple-redundant networks, which ensures dual fault-tolerance, an essential feature exemplified in its use by NASA's Orion spacecraft. The integrity and precision offered by Time-Triggered Ethernet make it ideal for implementing ECSS Engineering standards in space applications. It not only permits robust redundancy and high bandwidth (exceeding 10 Gbps) but also supports interoperability with various commercial off-the-shelf components, making it a versatile solution for complex network architectures.
Overview: The MIPI CSI-2 (Camera Serial Interface) defines an interface between a peripheral device (camera) and host processor (application engine) for mobile applications. It offers the mobile industry a standard, robust, scalable, low-power, high-speed, and cost-effective interface that supports a wide range of imaging solutions for mobile devices. Key Features:  Compliance with MIPI-CSI-2 version 3.0  Compliance with C-PHY 2.0 for MIPI CSI-2 Version 3.0  Compliance with D-PHY 2.5 for MIPI CSI-2 Version 3.0  Compatibility with I2C and I3C (SDR, DDR) for CCI interface  Support for C-PHY 2.0, D-PHY 2.5, A-PHY, M-PHY with configurable PHY layer  Processor Interfaces: AHB Lite/APB/AXI for configuration  Lane Merging Function for consolidating packet data in CSI-2 Receiver  De-skew detection in D-PHY and sync word detection in C-PHY  Pixel Formats Supported: YUV, RGB, and RAW data  Virtual Channels: 16 for D-PHY, 32 for C-PHY  Error detection, interleaving, scrambling, and descrambling support  Byte to pixel conversion in LLP layer Applications:  Imaging  Surveillance  Gaming  Sensor devices  Internet of Things (IoT)  Wearable devices  Virtual Reality  Augmented Reality  Automotive Systems
PCIE is a layered protocol high speed interconnect interface supporting speeds up to 128Gbps and multi lanes and links. The layers speci_ied in PCIE speci_ication Transport, Datalink, Physical layers (digital packet) are implemented in PRIMEXPRESS IP along with PIPE interface logic connecting to PHY and AXI Bridging logic to connect to applications. Features: • Supports PCIE Gen 7 Spec. • Supports Pipe 6.X Spec. • PCIE Gen 7.0 Core supports Flit and non – Flit Mode. • Supports X16, X8, X4, X2, X1 Lane Configura􀆟on. • AXI MM and Streaming supported. • Supports Gen 1, Gen 2, Gen 3, Gen 4, Gen 5, Gen 6, Gen 7 modes. • Data rate support of 2.5 Gbps, 5 Gbps, 8 Gbps, 16 Gbps, 32 Gbps, 64 Gbps, 128 Gbps. • PAM support when operating at 64Gbps/ 128Gbps. • 8b/10b,128b/130b,1b/1b encoding , decoding support. • Supports serdes and non – serdes architecture. • Op􀆟onal DMA support as plugin module. • Support for alternate nego􀆟a􀆟on protocol. • Lane polarity thru register control. • Lane deskew supported. • Support for L1 states. • L0P Supported. • SKP OS add/removal. • SRIS mode supported. • No equalization support thru configura􀆟on. • Deemphasis negotiation support at 5GT/s. • EI inferences in all modes. • PTM, OBFF, MSI, MSIX, Power management and all message format supports.
The PDM-to-PCM Converter from Archband Labs leads in transforming pulse density modulation signals into pulse code modulation signals. This converter is essential in applications where high fidelity of audio signal processing is vital, including digital audio systems and communication devices. Archband’s solution ensures accurate conversion, preserving the integrity and clarity of the original audio. This converter is crafted to seamlessly integrate with a wide array of systems, offering flexibility and ease-of-use in various configurations. Its robust design supports a wide range of input frequencies, making it adaptable to different signal environments. The PDM-to-PCM Converter also excels in minimizing latency and reducing overhead processing times. It’s engineered for environments where precision and sound quality are paramount, ensuring that audio signals remain crisp and undistorted during conversion processes.
The Advanced eXtensible Interface(AXI) bus is a high-performance parallel bus that connects on-chip peripheral circuits (or IP blocks) to processor cores. The AXI bus employs "channels" to divide read and write transactions into semi-independent activities that can run at their own pace. The Read Address and Read Data channels send data from the target to the initiator, whereas the Write Address, Write Data, and Write Response channels transfer data from the initiator to the target.
The SERDES solutions by Analog Bits are integral components for high-speed data transfer applications, effectively serializing and deserializing data streams to improve bandwidth efficiency in electronic devices. These SERDES IPs support data rates that suit a variety of communication standards, including Ethernet and PCI Express. Leveraging state-of-the-art design techniques, these solutions optimize data throughput and reduce latency, providing the necessary data integrity and speed for applications like telecommunications and high-performance computing. Their scalable architecture allows for customization across different technology nodes, catering to specific design needs and operational environments. Analog Bits' SERDES IPs are commonly implemented in data-intensive applications, making them suitable for industries demanding high-speed connectivity, such as data centers, automotive electronics, and mobile communications. These products are validated on leading process nodes, ensuring that they deliver consistent performance even under stringent conditions.
Silicon Creations crafts highly reliable LVDS interfaces designed to meet diverse application needs, going from bi-directional I/Os to specialized uni-directional configurations. Spanning process compatibilities from 90nm CMOS to advanced 7nm FinFET, these interfaces are a cornerstone for high-speed data communication systems, thriving particularly in video data transmission and chip-to-chip communications. Supporting robust data rates over multiple channels, the LVDS Interfaces guarantee flexible programmability and protocol compatibility with standards such as FPD-Link and Camera-Link. They capitalize on proven PLL and CDR architectures for superior signal integrity and error-free data transfers. Operating efficiently in various technology nodes, they remain highly effective across collaborative chipset environments. The interfaces are fortified with adaptable features like dynamic phase alignment to stabilize data sequences and on-die termination options for superior signal integrity. Their proven record places them as a critical enabler in applications where consistent high-speed data transfer is paramount, demonstrating Silicon Creations’ prowess in delivering industry-leading communication solutions.
eSi-Connect offers an extensive suite of AMBA-compliant peripheral IPs designed to streamline SoC integration. This suite encompasses versatile memory controllers, standard off-chip interface support, and essential control functions. Its configurability and compatibility with low-level software drivers make it suitable for real-time deployment in complex system architectures, promoting reliable connectivity across various applications.
PCIE is a layered protocol high speed interconnect interface supporting speeds up to 128Gbps and multi lanes and links. The layers speci_ied in PCIE speci_ication Transport, Datalink, Physical layers (digital packet) are implemented in PRIMEXPRESS IP along with PIPE interface logic connecting to PHY and AXI Bridging logic to connect to applications. Features: • Supports PCIE Gen 7 draft Spec. • Supports Pipe 6.X Spec. • PCIE Gen 7.0 Core supports Flit and non – Flit Mode. • Supports X16, X8, X4, X2, X1 Lane Configuration. • AXI MM and Streaming supported. • Supports Gen 1, Gen 2, Gen 3, Gen 4, Gen 5, Gen 6, Gen 7 modes. • Data rate support of 2.5 Gbps, 5 Gbps, 8 Gbps, 16 Gbps, 32 Gbps, 64 Gbps, 128 Gbps. • PAM support when operating at 64Gbps/ 128Gbps. • 8b/10b,128b/130b,1b/1b encoding , decoding support. • Supports serdes and non – serdes architecture. • Optional DMA support as plugin module. • Support for alternate negotiation protocol. • Lane polarity thru register control. • Lane deskew supported. • Support for L1 states. • L0P Supported. • SKP OS add/removal. • SRIS mode supported. • No equalization support thru configuration. • Deemphasis negotiation support at 5GT/s. • EI inferences in all modes. • PTM, OBFF, MSI, MSIX, Power management and all message format supports.
The EW6181 GPS and GNSS Silicon is an advanced semiconductor solution specifically engineered for high-efficiency, low-power applications. This digital GNSS silicon offers a compact design with a footprint of approximately 0.05mm2, particularly when applied in 5nm semiconductor technology. Designed for seamless integration, the EW6181 combines innovative DSP algorithms and multi-node licensing flexibility, enhancing the overall device performance in terms of power conservation and reliability. Featuring a robust architecture, the EW6181 integrates meticulously calibrated components all aimed at reducing the bill of materials (BoM) while ensuring extended battery life for devices such as tracking tags and modules. This strategic component minimization directly translates to more efficient power usage, addressing the needs of power-sensitive applications across various sectors. Capable of supporting high-reliability location tracking, the EW6181 comes supplemented with stable firmware, ensuring dependable performance and future upgrade paths. Its adaptable IP core can be licensed in RTL, gate-level netlist, or GDS forms, adaptable to a wide range of technology nodes, assuming the availability of the RF frontend capabilities.
The AHB-Lite Multilayer Switch by Roa Logic is a sophisticated interconnect fabric that provides high performance with low latency capabilities. Designed for extensive connectivity, it supports an unlimited number of bus masters and slaves, making it ideal for large-scale system architectures. This switch ensures data is efficiently propagated through various paths, optimizing resource allocation and throughput in complex systems. With a focus on performance, the multilayer switch is crafted to manage data traffic within high-demand environments seamlessly. Its support for multiple layers allows it to efficiently handle concurrent data transactions, facilitating effective communication between different system components. The adaptive structure and controlled latency pathways enable it to fit a multitude of applications, including those requiring rapid data transfer and processing. The AHB-Lite Multilayer Switch is engineered to integrate seamlessly into modern system architectures, enhancing throughput without compromising on signal integrity. Its robust design and flexible configuration options make it indispensable within systems necessitating dynamic connectivity solutions.
The Apodis family of Optical Transport Network processors adheres to ITU-T standards, offering a comprehensive suite for signal termination, processing, and multiplexing. Designed to handle both SONET/SDH and Ethernet client services, these processors map signals to Optical Transport Network (OTN), empowering versatile any-port, any-service configurations. Apodis processors are notable for their capacity to support up to 16 client ports and four 10G OTN line ports, delivering bandwidth scalability up to 40G, crucial for wireless backhaul and fronthaul deployments. With a robust, non-blocking OTN switching fabric, Apodis facilitates seamless client-to-line and line-to-line connections while optimally managing network bandwidth. This adaptability makes the Apodis processors an ideal choice for next-generation access networks and optical infrastructures.
The AHB-Lite Timer module designed by Roa Logic is compliant with the RISC-V Privileged 1.9.1 specification, offering a versatile timing solution for embedded applications. As an integral peripheral, it provides precise timing functionalities, enabling applications to perform scheduled operations accurately. Its parameterized design allows developers to adjust the timer's features to match the needs of their system effectively. This timer module supports a broad scope of timing tasks, ranging from simple delay setups to complex timing sequences, making it ideal for various embedded system requirements. The flexibility in its design ensures straightforward implementation, reducing complexity and enhancing the overall performance of the target application. With RISC-V compliance at its core, the AHB-Lite Timer ensures synchronization and precision in signal delivery, crucial for systems tasked with critical timing operations. Its adaptable architecture and dependable functionality make it an exemplary choice for projects where timing accuracy is required.
Overview: The MIPI I3C Controller IP Core is fully compliant with the latest I3C specification, offering high bandwidth and scalability for integrating multiple sensors into mobile, automotive, and IoT system-on-chips (SoCs). This controller support in-band interrupts within the 2-wire interface, reducing pin count, simplifying board design, and lowering power and system costs. Backward compatibility with I2C ensures future-proof designs, and the controller's operating modes enable efficient connectivity for systems with multiple ICs and sensors on a single I3C bus. The ARM® AMBA® Advanced High-Performance Bus (AHB) facilitates seamless integration of the IP into the SoC. Key Features:  Compliance with MIPI-I3C Basic v1.0  Backward compatibility with I2C  Two-wire serial interface up to 12.5MHz using Push-Pull  Dynamic and Static Addressing support  Single Data Rate messaging (SDR)  Broadcast and Direct Common Command Code (CCC) Messages support  In-Band Interrupt capability  Hot-Join Support Applications:  Consumer Electronics  Defense  Aerospace  Virtual Reality  Augmented Reality  Medical  Biometrics (Fingerprints, etc.)  Automotive Devices  Sensor Devices
The Maverick-2 Intelligent Compute Accelerator revolutionizes computing with its Intelligent Compute Architecture (ICA), delivering unparalleled performance and efficiency for HPC and AI applications. This innovative product leverages real-time adaptability, enabling it to optimize hardware configurations dynamically to match the specific demands of various software workloads. Its standout feature is the elimination of domain-specific languages, offering a universal solution for scientific and technical computing. Equipped with a robust developer toolchain that supports popular languages like C, C++, FORTRAN, and OpenMP, the Maverick-2 seamlessly integrates into existing workflows. This minimizes the need for code rewrites while maximizing developer productivity. By providing extensive support for emerging technologies such as CUDA and HIP/ROCm, Maverick-2 ensures that it remains a viable and potent solution for current and future computing challenges. Built on TSMC's advanced 5nm process, the accelerator incorporates HBM3E memory and high-bandwidth PCIe Gen 5 interfaces, supporting demanding computations with remarkable efficiency. The Maverick-2 achieves a significant power performance advantage, making it ideal for data centers and research facilities aiming for greater sustainability without sacrificing computational power.
RapidGPT is a next-generation electronic design automation tool powered by AI. Designed for those in the hardware engineering field, it allows for a seamless transition from ideas to physical hardware without the usual complexities of traditional design tools. The interface is highly intuitive, engaging users with natural language interaction to enhance productivity and reduce the time required for design iterations.\n\nEnhancing the entire design process, RapidGPT begins with concept development and guides users through to the final stages of bitstream or GDSII generation. This tool effectively acts as a co-pilot for engineers, allowing them to easily incorporate third-party IPs, making it adaptable for various project requirements. This adaptability is paramount for industries where speed and precision are of the essence.\n\nPrimisAI has integrated novel features such as AutoReviewâ„¢, which provides automated HDL audits; AutoCommentâ„¢, which generates AI-driven comments for HDL files; and AutoDocâ„¢, which helps create comprehensive project documentation effortlessly. These features collectively make RapidGPT not only a design tool but also a comprehensive project management suite.\n\nThe effectiveness of RapidGPT is made evident in its robust support for various design complexities, providing a scalable solution that meets specific user demands from individual developers to large engineering teams seeking enterprise-grade capabilities.
aiSim 5 is at the forefront of automotive simulation, providing a comprehensive environment for the validation and verification of ADAS and AD systems. This innovative simulator integrates AI and physics-based digital twin technology, creating an adaptable and realistic testing ground that accommodates diverse and challenging environmental scenarios. It leverages advanced sensor simulation capabilities to reproduce high fidelity data critical for testing and development. The simulator's architecture is designed for modularity, allowing seamless integration with existing systems through C++ and Python APIs. This facilitates a wide range of testing scenarios while ensuring compliance with ISO 26262 ASIL-D standards, which is a critical requirement for automotive industry trust. aiSim 5 offers developers significant improvements in testing efficiency, allowing for runtime performance adjustments with deterministic outcomes. Some key features of aiSim 5 include the ability to simulate varied weather conditions with real-time adaptable environments, a substantial library of 3D assets, and built-in domain randomization features through aiFab for synthetic data generation. Additionally, its innovative rendering engine, aiSim AIR, enhances simulation realism while optimizing computational resources. This tool serves as an ideal solution for companies looking to push the boundaries of ADAS and AD testing and deployment.
Digital Predistortion (DPD) is a sophisticated technology crafted to optimize the power efficiency of RF power amplifiers. The flagship product, FlexDPD, presents a complete, adaptable sub-system that can be customized to any ASIC or FPGA/SoC platform. Thanks to its scalability, it is compatible with various device vendors. Designed for high performance, this DPD solution significantly boosts RF efficiencies by counteracting signal distortion, ensuring clear and effective transmission. The core of the DPD solution lies in its adaptability to a broad range of systems including 5G, multi-carrier platforms, and O-RAN frameworks. It's built to handle transmission bandwidths exceeding 1 GHz, making it a versatile and future-proof technology. This capability not only enhances system robustness but also offers a seamless integration pathway for next-generation communication standards. Additionally, Systems4Silicon’s DPD solution is field-tested, ensuring reliability in real-world applications. The solution is particularly beneficial for projects that demand high signal integrity and efficiency, providing a tangible advantage in competitive markets. Its compatibility with both ASIC and FPGA implementations offers flexibility and choice to partners, significantly reducing development time and cost.
The Multi-Protocol SERDES offered by Pico Semiconductor is a versatile solution capable of handling a variety of communication protocols. This series of SERDES includes a 4-channel configuration that supports data rates up to 32Gbps, designed for integration with XAUI, RXAUI, and SGMII. It is compatible with multiple process nodes provided by foundries like TSMC and GF, offering robust performance across different semiconductor environments. These SERDES are crafted to meet high-performance metrics, capturing speeds up to 16Gbps and 6.5Gbps across various models, with advanced versions reaching up to 32Gbps. This exceptional range not only ensures compatibility with current technologies but also prepares systems for future updates, sustaining high data throughput. By delivering reliable high-speed data transmission capabilities, the Multi-Protocol SERDES from Pico Semiconductor is integral for networking, high-speed computing, and data storage applications, where efficient and speedy data transfer is paramount.
The USB PHY by Silicon Library Inc. provides an efficient solution for USB interfaces, ensuring seamless data transfer and connectivity. This IP is designed to support the robust requirements of modern USB connectors, delivering high-speed performance and reliability. It integrates easily into various platforms, ensuring compliance with USB standards. The USB PHY facilitates crucial communication pathways needed in numerous devices, such as computers, mobile devices, and peripheral accessories. It optimizes power usage, contributing to enhanced system energy efficiency. Additionally, this IP's modular nature allows flexibility in deployment across different applications, from consumer electronics to automotive systems. With a focus on integrating advanced features and maintaining low power consumption, Silicon Library's USB PHY is engineered to meet the demands of next-generation connectivity solutions. Its adaptability and high performance make it a preferred choice for developers looking to implement reliable and high-speed USB connections in their products.
The AXI4 DMA Controller is a highly versatile IP core that supports multi-channel data transfers, ranging from 1 to 16 channels, depending on system requirements. Optimized for high throughput, this controller excels in transferring both small and large data sets effectively. It features independent DMA Read and Write Controllers for enhanced data handling with options for FIFO transfers to a diverse array of memory and peripheral configurations. This IP core offers significant flexibility with its programmable burst sizes, supporting up to 256 beats and adhering to critical boundary crossings in the AXI specification.
Join the world's most advanced semiconductor IP marketplace!
It's free, and you'll get all the tools you need to discover IP, meet vendors and manage your IP workflow!
No credit card or payment details required.
Join the world's most advanced AI-powered semiconductor IP marketplace!
It's free, and you'll get all the tools you need to advertise and discover semiconductor IP, keep up-to-date with the latest semiconductor news and more!
Plus we'll send you our free weekly report on the semiconductor industry and the latest IP launches!