All IPs > Interface Controller & PHY
Interface Controller & PHY semiconductor IPs are integral components in modern digital systems that facilitate communication between various parts of an electronic system, including processors, memory, and peripherals. These IPs are designed to manage data traffic efficiently, ensuring reliable and high-speed data transfer between different interfaces and devices. This catalog features a wide range of IPs that serve various standard and custom interface protocols, making them indispensable for semiconductor companies developing complex SoCs (System on Chips) and digital systems.
In this category, you will find a selection of IPs tailored for popular interface protocols such as AMBA (AHB, APB, AXI), HDMI, PCI, USB, and MIPI, among others. Each IP solution is optimized for performance, supporting high-speed data transfer and reduced latency to meet the demanding needs of today's applications. These IPs not only provide seamless integration capabilities into your design but also ensure compliance with industry standards, which is crucial for interoperability in multi-vendor environments.
The embedded controllers within these IPs handle the logical functions necessary for device communication, while the PHY (physical layer) IPs manage the actual transmission and reception of data across physical media. Together, they enable efficient bridging between different communication protocols, making them critical components in a vast array of devices ranging from consumer electronics like smartphones and gaming consoles to industrial systems and automotive applications.
Our catalog also offers specialized solutions such as Multi-Protocol PHYs that support multiple standards within a single IP, providing flexibility and reducing the footprint for designs that require versatile connectivity options. By selecting the right Interface Controller & PHY IP from our catalog, developers can significantly enhance the functionality and overall performance of their products, leveraging the latest advancements in data interface technology. Explore our offerings and find the precise IP solutions needed to bring your innovative designs to life.
The KL730 is a third-generation AI chip that integrates advanced reconfigurable NPU architecture, delivering up to 8 TOPS of computing power. This cutting-edge technology enhances computational efficiency across a range of applications, including CNN and transformer networks, while minimizing DDR bandwidth requirements. The KL730 also boasts enhanced video processing capabilities, supporting 4K 60FPS outputs. With expertise spanning over a decade in ISP technology, the KL730 stands out with its noise reduction, wide dynamic range, fisheye correction, and low-light imaging performance. It caters to markets like intelligent security, autonomous vehicles, video conferencing, and industrial camera systems, among others.
Designed for high-performance applications, the Metis AIPU PCIe AI Accelerator Card by Axelera AI offers powerful AI processing capabilities in a PCIe card format. This card is equipped with the Metis AI Processing Unit, capable of delivering up to 214 TOPS, making it ideal for intensive AI tasks and vision applications that require substantial computational power. With support for the Voyager SDK, this card ensures seamless integration and rapid deployment of AI models, helping developers leverage existing infrastructures efficiently. It's tailored for applications that demand robust AI processing like high-resolution video analysis and real-time object detection, handling complex networks with ease. Highlighted for its performance in ResNet-50 processing, which it can execute at a rate of up to 3,200 frames per second, the PCIe AI Accelerator Card perfectly meets the needs of cutting-edge AI applications. The software stack enhances the developer experience, simplifying the scaling of AI workloads while maintaining cost-effectiveness and energy efficiency for enterprise-grade solutions.
The Mixel MIPI C-PHY IP (MXL-CPHY) is a high-frequency, low-power, low cost, physical layer. (Learn more about Mixel’s MIPI ecosystem at Mixel MIPI Central which gives you access to Mixel’s best of class MIPI ecosystem supply chain partners.) The C-PHY configuration consists of up to three lane modules and is based on 3-Phase symbol encoding technology, delivering 2.28 bits per symbol over three-wire trios and targeting a maximum rate of 2.5 Gsps, 5.7Gbps. The C-PHY is partitioned into a digital module – CIL (Control and Interface Logic) and a mixed-signal module. The PHY IP is provided as a combination of soft IP views (RTL, and STA Constraints) for the digital module, and hard IP views (GDSII/CDL/LEF/LIB) for the mixed-signal module. This unique offering of both soft and hard IP permits architectural design flexibility and seamless implementation in customer-specific design flow. The CIL module interfaces with the protocol layer and determines the global operation of the module. The interface between the PHY and the protocol is using the PHY-Protocol Interface (PPI). The mixed-signal module includes high-speed signaling mode for fast-data traffic and low-power signaling mode for control purposes. During normal operation, a lane switches between low-power and high-speed mode. Bidirectional lanes can also switch communication direction. The change of operating mode or direction requires enabling and disabling of certain electrical functions. These enable and disable events do not cause glitches on the lines that would result in a detection of incorrect signal levels. All mode and direction changes are smooth to always ensure a proper detection of the line signals. Mixel’s C-PHY is a complete PHY, silicon-proven at multiple foundries and multiple nodes. It is built to support the MIPI Camera Serial Interface (CSI) and Display Serial Interface (DSI).
Alphawave Semi's 1G to 224G SerDes stands as a cornerstone in high-speed connectivity applications. This versatile SerDes solution supports a broad data rate range and multiple signaling schemes, such as PAM2, PAM4, PAM6, and PAM8, which adapt seamlessly to a variety of industry protocols and standards. Designed with the future of connectivity in mind, this intellectual property is critical for systems requiring robust and reliable data transmission across numerous networking environments. Notably, the 1G to 224G SerDes is engineered to deliver unparalleled performance, offering low latency and minimal power consumption. Its application is widespread in data center infrastructures, telecommunications, automotive systems, and beyond, providing the backbone for next-generation data processing and transmission needs. By integrating this SerDes, users can expect to enhance communication speed and efficiency, vital for maintaining competitive advantage in a rapidly evolving market. The ability to adapt to cutting-edge technologies, like AI and 5G, further underscores its versatility. This SerDes IP enables seamless integration of digital processing units with minimal interference, thus fostering robust system interconnections essential for high-performance computing environments.
The LVDS IP from Sunplus is optimized for high-speed differential signaling, perfect for video, graphics, and other data-intensive applications. It offers robust performance with low electromagnetic interference, providing a reliable data communication channel. This IP is tailored for integration into systems that require efficient long-distance data transfer with minimal signal degradation.
The Mixel MIPI C/D-PHY combo IP (MXL-CPHY-DPHY) is a high-frequency low-power, low cost, physical layer compliant with the MIPI® Alliance Standard for C-PHY and D-PHY. (Learn more about Mixel’s MIPI ecosystem at Mixel MIPI Central which gives you access to Mixel’s best of class MIPI ecosystem supply chain partners.) The PHY can be configured as a MIPI Master or MIPI Slave, supporting camera interface CSI-2 v1.2 or display interface DSI v1.3 applications in the D-PHY mode. It also supports camera interface CSI-2 v1.3 and display interface DSI-2 v1.0 applications in the C-PHY mode. The high-speed signals have a low voltage swing, while low-power signals have large swing. High-Speed functions are used for high-speed data traffic while low-power functions are mostly used for control. The C-PHY is based on 3-Phase symbol encoding technology, delivering 2.28 bits per symbol over three-wire trios, operating with a symbol rate range of 80 to 4500 Msps per lane, which is the equivalent of about 182.8 to 10260 Mbps per lane. The D-PHY supports a bit rate range of 80 to 1500 Mbps per Lane without deskew calibration, and up to 4500 Mbps with deskew calibration. The low-power mode and escape mode are the same in both the D-PHY and C-PHY modes. To minimize EMI, the drivers for low-power mode are slew-rate controlled and current limited. The data rate in low-power mode is 10 Mbps. For a fixed clock frequency, the available data capacity of a PHY configuration can be increased by using more lanes. Effective data throughput can be reduced by employing burst mode communication. Mixel’s C-PHY/D-PHY combo is a complete PHY, silicon-proven at multiple foundries and multiple nodes. The C/D-PHY is fully integrated and has analog circuitry, digital, and synthesizable logic.
The GL3590-S is a USB 3.2 Gen 2 Hub Controller designed to provide seamless connectivity via integrated USB Type-C® support. This controller is capable of managing multiple upstream ports, making it ideal for complex data management tasks in modern electronics. Its sophisticated architecture allows for high-speed data transfer, ensuring efficiency in demanding computational environments. Integrated with USB 3.2 Gen 2 hub capabilities, the GL3590-S supports rapid data exchange rates essential for applications needing swift resolution and connectivity. The device plays a crucial role in amplifying the USB connection bandwidth, thereby enhancing the performance and reliability of connected devices. Moreover, this hub controller is equipped with advanced compatibility features, supporting various data transfer protocols. It aims to streamline the integration process across computing platforms, providing a robust solution for today's data-driven ecosystems.
Primesoc's PCIE GEn7 IP is dual mode controller , supporting upto 128Gbps per lane data rate , which can work as root complex or as an endpoint. This is a soft IP which can support serdes and non serdes architectures and PIPE interface of 64bit and lanes configurable from 1/2/4/8/16.
Panmnesia's CXL 3.1 Switch is an integral component designed to facilitate high-speed, low-latency data transfers across multiple connected devices. It is architected to manage resource allocation seamlessly in AI and high-performance computing environments, supporting broad bandwidth, robust data throughput, and efficient power consumption, creating a cohesive foundation for scalable AI infrastructures. Its integration with advanced protocols ensures high system compatibility.
EXTOLL's Universal Chiplet Interconnect Express (UCIe) is a cutting-edge solution designed to meet the evolving needs of chip-to-chip communication. UCIe enables seamless data exchange between chiplets, fostering a new era of modular and scalable processor designs. This technology is especially vital for applications requiring high bandwidth and low latency in data transfer between different chip components. Built to support heterogeneous integration, UCIe offers superior scalability and is compatible with a variety of process nodes, enabling easy adaptation to different technological requirements. This ensures that system architects can achieve optimal performance without compromising on design flexibility or efficiency. Furthermore, UCIe's design philosophy is centered around maintaining ultra-low power consumption, aligning with modern demands for energy-efficient technology. Through EXTOLL’s UCIe, developers have the capability to build versatile and multi-functional platforms that are more robust than ever. This interconnect technology not only facilitates communications between chips but enhances the overall architecture, paving the way for future innovations in chiplet systems.
Silicon Creations' SerDes Interfaces are crafted to handle high-speed data transmission challenges over varied processes, ranging from 12nm to 180nm. Addressing multiple protocols such as CPRI, PCIe, and SATA, these interfaces demonstrate flexibility by supporting data transmission speeds from 100 Mbps to beyond 32 Gbps. The architecture incorporates a host of advanced features including adaptive equalization techniques and programmable de-serialization widths, making it stand out in terms of performance and signal integrity even under challenging conditions. With ultra-low latency PMAs, they sustain excellent operational speed and efficiency, imperative for sophisticated communication applications. Moreover, Silicon Creations partners with leading entities to provide comprehensive solutions, including complete PCIe PHY integrations. This synergy ensures that SerDes Interfaces are fully optimized for operational excellence, delivering stable and reliable communication signals. With an emphasis on low power and minimized area requirements, they cater to burgeoning industry needs for power-efficient and space-conservative designs.
Altek's AI Camera Module integrates sophisticated imaging technology with artificial intelligence, providing a powerful solution for high-definition visual capture and AI-based image processing. This module is tailored for applications where high precision and advanced analytic capabilities are required, such as in security systems and automotive technology. The module is equipped with a broad range of functionalities, including facial recognition, motion detection, and edge computing. It harnesses AI to process images in real-time, delivering insights and analytics that support decision-making processes in various environments. By combining AI with its imaging sensors, Altek enables next-generation visual applications that require minimal human intervention. Altek's AI Camera Module stands out for its high-degree of integration with IoT networks, allowing for seamless connectivity across devices. Its adaptability to different environments and conditions makes it a highly versatile tool. The module's design ensures durability and reliability, maintaining performance even under challenging conditions, thereby ensuring consistent and accurate image capture and processing.
Advanced Peripheral Bus (APB) is one of the Advanced Microcontroller Bus Architecture (AMBA) family protocols. It is a low-cost interface that is designed for low power consumption and interface simplicity. Unlike AHB, it is a non-pipelined protocol for connecting low-bandwidth peripherals. Mostly used to link external peripherals to the SOC. Every APB transfer requires at least two clock cycles (SETUP Cycle and ACCESS Cycle) to finish. The APB interface is designed for accessing the programmable control registers of peripheral devices. The APB protocol has two independent data buses, one for read data and one for write data. The buses can be 8, 16, or 32 bits wide. The read and write data buses must have the same width. Data transfers cannot occur concurrently because the read data and write data buses do not have their own individual handshake signals.
The Yitian 710 processor from T-Head represents a significant advancement in server chip technology, featuring an ARM-based architecture optimized for cloud applications. With its impressive multi-core design and high-speed memory access, this processor is engineered to handle intensive data processing tasks with efficiency and precision. It incorporates advanced fabrication techniques, offering high throughput and low latency to support next-generation cloud computing environments. Central to its architecture are 128 high-performance CPU cores utilizing the Armv9 structure, which facilitate superior computational capabilities. These cores are paired with substantial cache size and high-speed DDR5 memory interfaces, optimizing the processor's ability to manage massive workloads effectively. This attribute makes it an ideal choice for data centers looking to enhance processing speed and efficiency. In addition to its hardware prowess, the Yitian 710 is designed to deliver excellent energy efficiency. It boasts a sophisticated power management system that minimizes energy consumption without sacrificing performance, aligning with green computing trends. This combination of power, efficiency, and environmentally friendly design positions the Yitian 710 as a pivotal choice for enterprises propelling into the future of computing.
The Aries fgOTN processor family is engineered according to the ITU-T G.709.20 fgOTN standard. This line of processors handles a variety of signals, including E1/T1, FE/GE, and STM1/STM4, effectively monitoring and managing alarms and performance metrics. Aries processors excel at fine-grain traffic aggregation, efficiently channeling fgODUflex traffic across OTN lines to support Ethernet, SDH, PDH client services. Their capacity to map signals to fgODUflex containers, which are then multiplexed into higher order OTN signals, demonstrates their versatility and efficiency. By allowing cascaded configurations with other Aries devices or Apodis processors, Aries products optimize traffic routes through OTN infrastructures, positioning them as essential components in optical networking and next-generation access scenarios.
The Mixel MIPI D-PHY IP (MXL-DPHY) is a high-frequency low-power, low cost, source-synchronous, physical layer compliant with the MIPI® Alliance Standard for D-PHY. (Learn more about Mixel’s MIPI ecosystem at Mixel MIPI Central which gives you access to Mixel’s best of class MIPI ecosystem supply chain partners.) Although primarily used for connecting cameras and display devices to a core processor, this MIPI PHY can also be used for many other applications. It is used in a master-slave configuration, where high-speed signals have a low voltage swing, and low-power signals have large swing. High-speed functions are used for high-speed data traffic while low-power functions are mostly used for control. The D-PHY is partitioned into a Digital Module – CIL (Control and Interface Logic) and a Mixed Signal Module. It is provided as a combination of Soft IP views (RTL, and STA Constraints) for Digital Module, and Hard IP views (GDSII/CDL/LEF/LIB) for the Mixed Signal Module. This unique offering of Soft and Hard IP permits architectural design flexibility and seamless implementation in customer-specific design flow. The CIL module interfaces with the protocol layer and determines the global operation of the lane module. The interface between the D-PHY and the protocol is called the PHY-Protocol Interface (PPI). During normal operation, the data lane switches between low-power mode and high-speed mode. Bidirectional lanes can also switch communication direction. The change of operating mode or direction requires enabling and disabling certain electrical functions. These enable and disable events do not cause glitches on the lines that would otherwise result in detections of incorrect signal levels. Therefore, all mode and direction changes occur smoothly, ensuring proper detection of the line signals. Mixel’s D-PHY is a complete PHY, silicon-proven at multiple foundries and multiple nodes. This MIPI PHY is fully integrated and has analog circuitry, digital, and synthesizable logic. Our D-PHY is built to support the MIPI Camera Serial Interface (CSI) and Display Serial Interface (DSI) using the PHY Protocol Interface (PPI). Mixel has provided this IP in many different configurations to accommodate different applications. The Universal Lane configuration can be used to support any allowed use-case, while other configurations are optimized for many different use cases such as Transmit only, Receive only, DSI, CSI, TX+ and RX+. Both TX+ and RX+ configurations support full-speed loopback operation without the extra area associated with a universal lane configuration.
The Chimera GPNPU from Quadric is engineered to meet the diverse needs of modern AI applications, bridging the gap between traditional processing and advanced AI model requirements. It's a fully licensable processor, designed to deliver high AI inference performance while eliminating the complexity of traditional multi-core systems. The GPNPU boasts an exceptional ability to execute various AI models, including classical backbones, state-of-the-art transformers, and large language models, all within a single execution pipeline.\n\nOne of the core strengths of the Chimera GPNPU is its unified architecture that integrates matrix, vector, and scalar processing capabilities. This singular design approach allows developers to manage complex tasks such as AI inference and data-parallel processing without resorting to multiple tools or artificial partitioning between processors. Users can expect heightened productivity thanks to its modeless operation, which is fully programmable and efficiently executes C++ code alongside AI graph code.\n\nIn terms of versatility and application potential, the Chimera GPNPU is adaptable across different market segments. It's available in various configurations to suit specific performance needs, from single-core designs to multi-core clusters capable of delivering up to 864 TOPS. This scalability, combined with future-proof programmability, ensures that the Chimera GPNPU not only addresses current AI challenges but also accommodates the ever-evolving landscape of cognitive computing requirements.
xcore.ai is a versatile and powerful processing platform designed for AIoT applications, delivering a balance of high performance and low power consumption. Crafted to bring AI processing capabilities to the edge, it integrates embedded AI, DSP, and advanced I/O functionalities, enabling quick and effective solutions for a variety of use cases. What sets xcore.ai apart is its cycle-accurate programmability and low-latency control, which improve the responsiveness and precision of the applications in which it is deployed. Tailored for smart environments, xcore.ai ensures robust and flexible computing power, suitable for consumer, industrial, and automotive markets. xcore.ai supports a wide range of functionalities, including voice and audio processing, making it ideal for developing smart interfaces such as voice-controlled devices. It also provides a framework for implementing complex algorithms and third-party applications, positioning it as a scalable solution for the growing demands of the connected world.
iWave Global introduces the ARINC 818 Switch, a pivotal component in the management and routing of video data within avionics systems. Designed for applications that require efficient video data distribution and management, the switch is optimized for performance in environments with stringent data handling requirements. The switch's architecture supports a high level of bandwidth, allowing for the smooth routing of multiple video streams in real-time. Its design includes advanced features that ensure low-latency, error-free data transfer, integral to maintaining the integrity and reliability of video data in critical applications. Featuring robust interoperability characteristics, the ARINC 818 Switch easily integrates into existing systems, facilitating modular expansion and adaptability to new technological standards. It is indispensable for any aerospace project that involves complex video data management, providing a stable platform for video data routing and switching.
The Metis AIPU M.2 Accelerator Module from Axelera AI is a cutting-edge solution designed for enhancing AI performance directly within edge devices. Engineered to fit the M.2 form factor, this module packs powerful AI processing capabilities into a compact and efficient design, suitable for space-constrained applications. It leverages the Metis AI Processing Unit to deliver high-speed inference directly at the edge, minimizing latency and maximizing data throughput. The module is optimized for a range of computer vision tasks, making it ideal for applications like multi-channel video analytics, quality inspection, and real-time people monitoring. With its advanced architecture, the AIPU module supports a wide array of neural networks and can handle up to 24 concurrent video streams, making it incredibly versatile for industries looking to implement AI-driven solutions across various sectors. Providing seamless compatibility with AI frameworks such as TensorFlow, PyTorch, and ONNX, the Metis AIPU integrates seamlessly with existing systems to streamline AI model deployment and optimization. This not only boosts productivity but also significantly reduces time-to-market for edge AI solutions. Axelera's comprehensive software support ensures that users can achieve maximum performance from their AI models while maintaining operational efficiency.
The KL630 is a pioneering AI chipset featuring Kneron's latest NPU architecture, which is the first to support Int4 precision and transformer networks. This cutting-edge design ensures exceptional compute efficiency with minimal energy consumption, making it ideal for a wide array of applications. With an ARM Cortex A5 CPU at its core, the KL630 excels in computation while maintaining low energy expenditure. This SOC is designed to handle both high and low light conditions optimally and is perfectly suited for use in diverse edge AI devices, from security systems to expansive city and automotive networks.
Designed to cater to high-performance networking needs, this offload engine integrates multiple functionalities including TCP offloading, MAC, PCIe, and host interface in one low-latency package. It enables a complete bypass of the host CPU processing, drastically reducing the load and enhancing data throughput. The solution boasts an ultra-low latency of 77 ns, ensuring robust performance suited for critical applications that demand high-speed data processing. The architecture of this offload engine supports a vast number of concurrent TCP and UDP sessions, offering a consistent latency and impressive data transfer rate per session. By offloading network processing tasks, this solution frees up CPU resources, thus achieving efficient operation and lower power consumption. It is particularly advantageous for deployment in data-intensive environments such as cloud computing infrastructures and modern data centers. Equipped with dual-10G ports and advanced features like enterprise-class reliability and scalability, it has been widely adopted for its capability to execute networking tasks efficiently while consuming minimal resources. This engine integrates architecture that is designed to be immune to network jitter, providing a seamless networking experience across multiple ports.
The AHB-Lite APB4 Bridge is an adaptable soft interconnect bridge linking the AMBA 3 AHB-Lite protocol with the AMBA APB protocol. It facilitates seamless communication between these bus protocols, ensuring data transfers are conducted efficiently within an embedded system. This bridge supports parameterization, allowing engineers to configure it for their unique design needs, thereby improving system flexibility and performance in electronic projects.
Time-Triggered Ethernet (TTEthernet) is a cutting-edge data communication solution tailored for aviation and space sectors requiring dual fault-tolerance and redundancy. Critically designed to support environments with high safety-criticality, TTEthernet embodies an evolutionary step in Ethernet communication by integrating deterministic behavior with conventional Ethernet benefits. This blend of technologies facilitates the transfer of data with precision timing, ensuring that all communications occur as scheduled—a vital feature for mission-critical operations. TTEthernet is particularly advantageous in applications requiring high levels of data integrity and latency control. Its deployment across triple-redundant network architectures ensures that even in case of component failures, the network continues to function seamlessly. Such redundancy is necessary in scenarios like human space missions, where data loss or delay is not an option. TTTech's TTEthernet offerings, which also include ASIC designs, meet the European Cooperation for Space Standardization (ECSS) standards, reinforcing their reliability and suitability for the most demanding applications. Supporting both end systems and more intricate system-on-chip designs, this technology synchronizes all data flow to maintain continuity and consistency throughout the network infrastructure.
RaiderChip's GenAI v1 is a pioneering hardware-based generative AI accelerator, designed to perform local inference at the Edge. This technology integrates optimally with on-premises servers and embedded devices, offering substantial benefits in privacy, performance, and energy efficiency over traditional hybrid AI solutions. The design of the GenAI v1 NPU streamlines the process of executing large language models by embedding them directly onto the hardware, eliminating the need for external components like CPUs or internet connections. With its ability to support complex models such as the Llama 3.2 with 4-bit quantization on LPDDR4 memory, the GenAI v1 achieves unprecedented efficiency in AI token processing, coupled with energy savings and reduced latency. What sets GenAI v1 apart is its scalability and cost-effectiveness, significantly outperforming competitive solutions such as Intel Gaudi 2, Nvidia's cloud GPUs, and Google's cloud TPUs in terms of memory efficiency. This solution maximizes the number of tokens generated per unit of memory bandwidth, thus addressing one of the primary limitations in generative AI workflow. Furthermore, the adept memory usage of GenAI v1 reduces the dependency on costly memory types like HBM, opening the door to more affordable alternatives without diminishing processing capabilities. With a target-agnostic approach, RaiderChip ensures the GenAI v1 can be adapted to various FPGAs and ASICs, offering configuration flexibility that allows users to balance performance with hardware costs. Its compatibility with a wide range of transformers-based models, including proprietary modifications, ensures GenAI v1's robust placement across sectors requiring high-speed processing, like finance, medical diagnostics, and autonomous systems. RaiderChip's innovation with GenAI v1 focuses on supporting both vanilla and quantized AI models, ensuring high computation speeds necessary for real-time applications without compromising accuracy. This capability underpins their strategic vision of enabling versatile and sustainable AI solutions across industries. By prioritizing integration ease and operational independence, RaiderChip provides a tangible edge in applying generative AI effectively and widely.
The ARINC 818 Product Suite is a comprehensive collection of tools and resources designed to support the full development lifecycle for ARINC 818 enabled equipment. This suite assists in the implementation and testing of ARINC 818 protocols, which are crucial for systems that require high-performance video and data transmission, such as in avionics and defense applications. The product suite is built to facilitate not only the development and qualification but also the simulation of ARINC 818 products, ensuring effective integration into mission-critical environments. The suite’s tools include development software and Implementer's guides, enabling seamless access to ARINC 818 capabilities.
Overview: The MIPI CSI-2 (Camera Serial Interface) defines an interface between a peripheral device (camera) and host processor (application engine) for mobile applications. It offers the mobile industry a standard, robust, scalable, low-power, high-speed, and cost-effective interface that supports a wide range of imaging solutions for mobile devices. Key Features:  Compliance with MIPI-CSI-2 version 3.0  Compliance with C-PHY 2.0 for MIPI CSI-2 Version 3.0  Compliance with D-PHY 2.5 for MIPI CSI-2 Version 3.0  Compatibility with I2C and I3C (SDR, DDR) for CCI interface  Support for C-PHY 2.0, D-PHY 2.5, A-PHY, M-PHY with configurable PHY layer  Processor Interfaces: AHB Lite/APB/AXI for configuration  Lane Merging Function for consolidating packet data in CSI-2 Receiver  De-skew detection in D-PHY and sync word detection in C-PHY  Pixel Formats Supported: YUV, RGB, and RAW data  Virtual Channels: 16 for D-PHY, 32 for C-PHY  Error detection, interleaving, scrambling, and descrambling support  Byte to pixel conversion in LLP layer Applications:  Imaging  Surveillance  Gaming  Sensor devices  Internet of Things (IoT)  Wearable devices  Virtual Reality  Augmented Reality  Automotive Systems
AMBA AHB is a bus interface designed for high-performance synthesizable applications. It specifies the interface between components such as initiator , interconnects, and targets. AMBA AHB incorporates the features needed for high-performance, high clock frequency systems. The most common AHB targets are internal memory devices, external memory interfaces, and high-bandwidth peripherals.
EXOSTIV is a versatile tool providing extensive capture capabilities for monitoring FPGA internal signals. It's designed to visualize operation in real-time, thus offering immense savings by mitigating FPGA bugs during production and lowering engineering costs. The tool adapts to different prototyping boards and supports a variety of FPGA configurations. A hallmark of EXOSTIV's functionality is its ability to perform at-speed analysis in complex FPGA designs. It features robust probes like the EP16000, which connects to FPGA chip transceivers, supporting significant data rates per transceiver. This setup ensures that engineers can conduct real-world testing and accurate data capture, overcoming the hindrances often encountered with simulation-only methods. The tool boasts a user-friendly interface centered around its Core Inserter and Probe Client software, allowing for efficient IP generation and integration into the target design. By providing comprehensive connectivity options via QSFP28 and supporting multiple platforms, EXOSTIV remains an essential asset for engineers aiming to enhance their FPGA design and validation processes.
The NuLink Die-to-Die PHY for Standard Packaging represents Eliyan's cornerstone technology, engineered to harness the power of standard packaging for die-to-die interconnects. This technology circumvents the limitations of advanced packaging by providing superior performance and power efficiencies traditionally associated only with high-end solutions. Designed to support multiple standards, such as UCIe and BoW, the NuLink D2D PHY is an ideal solution for applications requiring high bandwidth and low latency without the cost and complexity of silicon interposers or silicon bridges. In practical terms, the NuLink D2D PHY enables chiplets to achieve unprecedented bandwidth and power efficiency, allowing for increased flexibility in chiplet configurations. It supports a diverse range of substrates, providing advantages in thermal management, production cycle, and cost-effectiveness. The technology's ability to split a Network on Chip (NoC) across multiple chiplets, while maintaining performance integrity, makes it invaluable in ASIC designs. Eliyan's NuLink D2D PHY is particularly beneficial for systems requiring physical separation between high-performance ASICs and heat-sensitive components. By delivering interposer-like bandwidth and power in standard organic or laminate packages, this product ensures optimal system performance across varied applications, including those in AI, data processing, and high-speed computing.
Silicon Creations crafts highly reliable LVDS interfaces designed to meet diverse application needs, going from bi-directional I/Os to specialized uni-directional configurations. Spanning process compatibilities from 90nm CMOS to advanced 7nm FinFET, these interfaces are a cornerstone for high-speed data communication systems, thriving particularly in video data transmission and chip-to-chip communications. Supporting robust data rates over multiple channels, the LVDS Interfaces guarantee flexible programmability and protocol compatibility with standards such as FPD-Link and Camera-Link. They capitalize on proven PLL and CDR architectures for superior signal integrity and error-free data transfers. Operating efficiently in various technology nodes, they remain highly effective across collaborative chipset environments. The interfaces are fortified with adaptable features like dynamic phase alignment to stabilize data sequences and on-die termination options for superior signal integrity. Their proven record places them as a critical enabler in applications where consistent high-speed data transfer is paramount, demonstrating Silicon Creations’ prowess in delivering industry-leading communication solutions.
With a focus on maintaining signal integrity in high-speed interfaces, the PCIe Retimer extends the reach of PCI Express connections while preserving data quality. Essential for long signal paths, it works by regenerating signals to boost performance and provide reliable connections across distances. The retimer is particularly effective in environments with substantial electromagnetic interference, ensuring data transmission remains error-free and efficient across extended cable runs. By including line equalization and using advanced clock recovery techniques, the PCIe Retimer strengthens signal quality, allowing for greater system performance and reliability in a wide array of computing applications.
Roa Logic's AHB-Lite Multilayer Switch is engineered to provide high-performance, low-latency interconnectivity for AHB-Lite based systems. This switch supports numerous bus masters and slaves, facilitating robust data throughput across the system's architecture. By optimizing data traffic management, it enhances the overall efficiency of electronic devices that require complex data processing capabilities.
The bus converter module transforms wide initiator data buses to smaller target data buses or vice-versa. A narrow target on a wide bus, only requires external logic and no internal design changes. * APB: 32-bit wide initiator data buses to 16-bit target data buses. * AHB: 64-bit wide initiator data buses to 32-bit target data buses. * AXI: 256-bit wide initiator data buses to 64-bit target data buses A wide target on a narrow bus, only requires external logic and no internal design changes. * APB: 16-bit wide initiator data buses to 32-bit target data buses. * AHB: 32-bit wide initiator data buses to 64-bit target data buses. * AXI: 64-bit wide initiator data buses to 256-bit target data buses.
The Advanced eXtensible Interface(AXI) bus is a high-performance parallel bus that connects on-chip peripheral circuits (or IP blocks) to processor cores. The AXI bus employs "channels" to divide read and write transactions into semi-independent activities that can run at their own pace. The Read Address and Read Data channels send data from the target to the initiator, whereas the Write Address, Write Data, and Write Response channels transfer data from the initiator to the target.
The USB PHY offered by Silicon Library Inc. is meticulously designed to support seamless data transfer across USB interfaces, pivotal in modern digital consumption. This USB 2.0 PHY is integral to many applications, providing reliable connectivity and power efficiency that meet high-performance requirements. Designed with cutting-edge technology, the USB PHY integrates efficiently in various systems, ensuring data transfer integrity and speed. Its robust architecture makes it compatible with a myriad of devices, facilitating seamless data communication while optimizing power consumption. Furthermore, the USB PHY from Silicon Library Inc. is engineered to comply with the necessary quality standards, ensuring it can handle the rigorous demands of data-centric applications. Its implementation is straightforward, making it a preferred choice for system integrators seeking reliability and performance.
eSi-Connect offers an extensive suite of AMBA-compliant peripheral IPs designed to streamline SoC integration. This suite encompasses versatile memory controllers, standard off-chip interface support, and essential control functions. Its configurability and compatibility with low-level software drivers make it suitable for real-time deployment in complex system architectures, promoting reliable connectivity across various applications.
EW6181 is an IP solution crafted for applications demanding extensive integration levels, offering flexibility by being licensable in various forms such as RTL, gate-level netlist, or GDS. Its design methodology focuses on delivering the lowest possible power consumption within the smallest footprint. The EW6181 effectively extends battery life for tags and modules due to its efficient component count and optimized Bill of Materials (BoM). Additionally, it is backed by robust firmware ensuring highly accurate and reliable location tracking while offering support and upgrades. The IP is particularly suitable for challenging application environments where precision and power efficiency are paramount, making it adaptable across different technology nodes given the availability of its RF frontend.
The Mixel MIPI M-PHY (MXL-MPHY) is a high-frequency low-power, Physical Layer IP that supports the MIPI® Alliance Standard for M-PHY. (Learn more about Mixel’s MIPI ecosystem at Mixel MIPI Central which gives you access to Mixel’s best of class MIPI ecosystem supply chain partners.) The IP can be used as a physical layer for many applications, connecting flash memory-based storage, cameras and RF subsystems, and for providing chip-to-chip inter-processor communications (IPC). It supports MIPI UniPro and JEDEC Universal Flash Storage (UFS) standard. By using efficient BURST mode operation with scalable speeds, significant power savings can be obtained. Selection of signal slew rate and amplitude allows reduction of EMI/RFI, while maintaining low bit error rates.
Overview: The MIPI I3C Controller IP Core is fully compliant with the latest I3C specification, offering high bandwidth and scalability for integrating multiple sensors into mobile, automotive, and IoT system-on-chips (SoCs). This controller support in-band interrupts within the 2-wire interface, reducing pin count, simplifying board design, and lowering power and system costs. Backward compatibility with I2C ensures future-proof designs, and the controller's operating modes enable efficient connectivity for systems with multiple ICs and sensors on a single I3C bus. The ARM® AMBA® Advanced High-Performance Bus (AHB) facilitates seamless integration of the IP into the SoC. Key Features:  Compliance with MIPI-I3C Basic v1.0  Backward compatibility with I2C  Two-wire serial interface up to 12.5MHz using Push-Pull  Dynamic and Static Addressing support  Single Data Rate messaging (SDR)  Broadcast and Direct Common Command Code (CCC) Messages support  In-Band Interrupt capability  Hot-Join Support Applications:  Consumer Electronics  Defense  Aerospace  Virtual Reality  Augmented Reality  Medical  Biometrics (Fingerprints, etc.)  Automotive Devices  Sensor Devices
The PDM-to-PCM Converter from Archband Labs leads in transforming pulse density modulation signals into pulse code modulation signals. This converter is essential in applications where high fidelity of audio signal processing is vital, including digital audio systems and communication devices. Archband’s solution ensures accurate conversion, preserving the integrity and clarity of the original audio. This converter is crafted to seamlessly integrate with a wide array of systems, offering flexibility and ease-of-use in various configurations. Its robust design supports a wide range of input frequencies, making it adaptable to different signal environments. The PDM-to-PCM Converter also excels in minimizing latency and reducing overhead processing times. It’s engineered for environments where precision and sound quality are paramount, ensuring that audio signals remain crisp and undistorted during conversion processes.
The Multi-Protocol SERDES offered by Pico Semiconductor is a versatile solution capable of handling a variety of communication protocols. This series of SERDES includes a 4-channel configuration that supports data rates up to 32Gbps, designed for integration with XAUI, RXAUI, and SGMII. It is compatible with multiple process nodes provided by foundries like TSMC and GF, offering robust performance across different semiconductor environments. These SERDES are crafted to meet high-performance metrics, capturing speeds up to 16Gbps and 6.5Gbps across various models, with advanced versions reaching up to 32Gbps. This exceptional range not only ensures compatibility with current technologies but also prepares systems for future updates, sustaining high data throughput. By delivering reliable high-speed data transmission capabilities, the Multi-Protocol SERDES from Pico Semiconductor is integral for networking, high-speed computing, and data storage applications, where efficient and speedy data transfer is paramount.
The ePHY-5616 delivers data rates from 1 to 56Gbps across technology nodes of 16nm and 12nm. Designed for a diverse range of applications, this product offers superior BER and low latency, making it ideal for enterprise equipment like routers, switches, and network interface cards. The ePHY-5616 employs a highly configurable DSP-based receiver architecture designed to manage various insertion loss scenarios, from 10dB up to over 35dB. This ensures robust and reliable data transfer across multiple setups.
The Apodis family of Optical Transport Network processors adheres to ITU-T standards, offering a comprehensive suite for signal termination, processing, and multiplexing. Designed to handle both SONET/SDH and Ethernet client services, these processors map signals to Optical Transport Network (OTN), empowering versatile any-port, any-service configurations. Apodis processors are notable for their capacity to support up to 16 client ports and four 10G OTN line ports, delivering bandwidth scalability up to 40G, crucial for wireless backhaul and fronthaul deployments. With a robust, non-blocking OTN switching fabric, Apodis facilitates seamless client-to-line and line-to-line connections while optimally managing network bandwidth. This adaptability makes the Apodis processors an ideal choice for next-generation access networks and optical infrastructures.
Ethernet MAC 10M/100M/1G/2.5G IP is a solution that enables the host to communicate data using the IEEE 802.3 standard for 10M, 100M, 1G, 2.5G speeds and is suited for use in networking equipment such as switches and routers. The Client-side interface for the IP is AXI-S and the Ethernet MAC IP comes with GMII, RGMII or MII interfaces on the PHY side. The Ethernet MAC 10M/100M/1G/2.5G IP features a compact and low latency solution, it is highly configurable and can optionally include IEEE 1588 Timestamping Unit (TSU). The Silicon agnostic Ethernet MAC IP, suitable for ASICs and FPGAs, is prepared for easy integration with Ethernet PCS 10M/ 100M/1G/2.5G IP from Comcores.
Roa Logic's AHB-Lite Timer is a timer module that adheres to the RISC-V Privileged 1.9.1 specification, designed for use in RISC-V compliant systems. This module offers reliable timing functions essential for task scheduling and precise time control in embedded applications, delivering dependable performance required in various electronic applications.
The GenAI v1-Q from RaiderChip brings forth a specialized focus on quantized AI operations, reducing memory requirements significantly while maintaining impressive precision and speed. This innovative accelerator is engineered to execute large language models in real-time, utilizing advanced quantization techniques such as Q4_K and Q5_K, thereby enhancing AI inference efficiency especially in memory-constrained environments. By offering a 276% boost in processing speed alongside a 75% reduction in memory footprint, GenAI v1-Q empowers developers to integrate advanced AI capabilities into smaller, less powerful devices without sacrificing operational quality. This makes it particularly advantageous for applications demanding swift response times and low latency, including real-time translation, autonomous navigation, and responsive customer interactions. The GenAI v1-Q diverges from conventional AI solutions by functioning independently, free from external network or cloud auxiliaries. Its design harmonizes superior computational performance with scalability, allowing seamless adaptation across variegated hardware platforms including FPGAs and ASIC implementations. This flexibility is crucial for tailoring performance parameters like model scale, inference velocity, and power consumption to meet exacting user specifications effectively. RaiderChip's GenAI v1-Q addresses crucial AI industry needs with its ability to manage multiple transformer-based models and confidential data securely on-premises. This opens doors for its application in sensitive areas such as defense, healthcare, and financial services, where confidentiality and rapid processing are paramount. With GenAI v1-Q, RaiderChip underscores its commitment to advancing AI solutions that are both environmentally sustainable and economically viable.
The LPDDR4/4X/5 Secondary/Slave PHY offers targeted solutions for optimized memory interfacing in systems where primary and secondary controllers operate in tandem. This design is critical for addressing the needs of high-performance computing devices that require scalable memory management solutions. With its focus on efficient data handling and reduced latency, the Secondary/Slave PHY ensures seamless operation in complex memory systems. The design incorporates advanced control techniques to maximize memory throughput while adhering to rigorous power management standards. This positions it as a vital component for devices requiring high-speed memory access. Adaptability is a key feature of this PHY, with support for multiple LPDDR standards allowing it to interface with modern memory technologies. Its robust construction provides consistent performance across a range of operating conditions, catering to industries demanding high efficiency and reliability. The Secondary/Slave PHY thus enhances system capabilities, ensuring data integrity and reduced latency for innovative computational applications.
PCIE is a layered protocol high speed interconnect interface supporting speeds up to 128Gbps and multi lanes and links. The layers speci_ied in PCIE speci_ication Transport, Datalink, Physical layers (digital packet) are implemented in PRIMEXPRESS IP along with PIPE interface logic connecting to PHY and AXI Bridging logic to connect to applications. Features: • Supports PCIE Gen 7 Spec. • Supports Pipe 6.X Spec. • PCIE Gen 7.0 Core supports Flit and non – Flit Mode. • Supports X16, X8, X4, X2, X1 Lane Configura􀆟on. • AXI MM and Streaming supported. • Supports Gen 1, Gen 2, Gen 3, Gen 4, Gen 5, Gen 6, Gen 7 modes. • Data rate support of 2.5 Gbps, 5 Gbps, 8 Gbps, 16 Gbps, 32 Gbps, 64 Gbps, 128 Gbps. • PAM support when operating at 64Gbps/ 128Gbps. • 8b/10b,128b/130b,1b/1b encoding , decoding support. • Supports serdes and non – serdes architecture. • Op􀆟onal DMA support as plugin module. • Support for alternate nego􀆟a􀆟on protocol. • Lane polarity thru register control. • Lane deskew supported. • Support for L1 states. • L0P Supported. • SKP OS add/removal. • SRIS mode supported. • No equalization support thru configura􀆟on. • Deemphasis negotiation support at 5GT/s. • EI inferences in all modes. • PTM, OBFF, MSI, MSIX, Power management and all message format supports.
Overview: The SPD5 Hub controller IP is designed to interface with the I3C/I2C Host Bus, allowing for the isolation of local devices such as Temperature Sensors (TS) from the master host bus. It features a Two-wire serial interface with SCL and SDA busses. Key Features:  Compliance with JEDEC's JESD300-5  Support for speeds up to 12.5MHz  Bus Reset functionality  SDA arbitration support  Enabled Parity Check  Support for Packet Error Check (PEC)  Switch between I2C and I3C Basic Mode  Default Read address pointer Mode  Write and read operations for SPD5 Hub with or without PEC  In-band Interrupt (IBI) support  Write Protection for NVM memory blocks  Arbitration for Interrupts  Clearing of Device Status and IBI Status Registers  Error handling for Packet Error Check and Parity Errors  Common Command Codes (CCC) for I3C Basic Mode  Dynamic IO Operation Mode Switching  Bus Clear and Bus Reset capabilities  SPD5 Command features for NVM memory and Register Space  Read and Write access to NVM memory  Support for Offline Tester operation Applications:  DDR5 DIMM Application Environment  DDR5 NVDIMM Application Environment  Automotive Devices  Memory Devices  Power Management Devices  Defense/Aerospace/Customer Electronics
Join the world's most advanced semiconductor IP marketplace!
It's free, and you'll get all the tools you need to discover IP, meet vendors and manage your IP workflow!
No credit card or payment details required.
Join the world's most advanced AI-powered semiconductor IP marketplace!
It's free, and you'll get all the tools you need to advertise and discover semiconductor IP, keep up-to-date with the latest semiconductor news and more!
Plus we'll send you our free weekly report on the semiconductor industry and the latest IP launches!