All IPs > Analog & Mixed Signal
Analog & Mixed Signal semiconductor IPs are essential components in modern electronics, serving as the backbone for a wide range of applications that require the processing, conversion, and management of both analog and digital signals. This category encompasses a diverse array of integrated circuit designs and modules that facilitate the seamless handling of signal variations, ensuring the performance and efficiency of electronic devices.
The category includes Analog-to-Digital (A/D) and Digital-to-Analog (D/A) Converters, crucial for the conversion of signals between their analog and digital forms, enabling precise data processing and communication in devices such as smartphones, audio equipment, and sensor interfaces. Amplifiers, Analog Comparators, and Analog Filters further enhance signal fidelity by boosting signal strength, comparing voltages, and removing unwanted noise or frequency components, respectively.
Analog & Mixed Signal IPs also feature specialized components like Phase-Locked Loops (PLLs) and Delay-Locked Loops (DLLs) that are pivotal in frequency synthesis and timing signal alignment in high-speed data communication systems. Power Management IPs, including DC-DC Converters, ensure optimal energy efficiency by effectively regulating voltage levels and power distribution across electronic systems.
Additional solutions such as Clock Synthesizers, RF Modules, and Photonics components address the growing needs for high-frequency signal generation, wireless communication enhancement, and optical signal processing. The category also contains Analog Front Ends and Multiplexers, which are integral in conditioning and selecting signals in complex systems, highlighting the expansive utility of Analog & Mixed Signal semiconductor IPs in contemporary electronic design and innovation.
The KL730 AI SoC is an advanced powerhouse, utilizing third-generation NPU architecture to deliver up to 8 TOPS of efficient computing. This architecture excels in both CNN and transformer applications, optimizing DDR bandwidth usage. Its robust video processing features include 4K 60FPS video output, with exceptional performance in noise reduction, dynamic range, and low-light scenarios. With versatile application support ranging from intelligent security to autonomous driving, the KL730 stands out by delivering exceptional processing capabilities.
The Mixel MIPI C-PHY IP (MXL-CPHY) is a high-frequency, low-power, low cost, physical layer. (Learn more about Mixel’s MIPI ecosystem at Mixel MIPI Central which gives you access to Mixel’s best of class MIPI ecosystem supply chain partners.) The C-PHY configuration consists of up to three lane modules and is based on 3-Phase symbol encoding technology, delivering 2.28 bits per symbol over three-wire trios and targeting a maximum rate of 2.5 Gsps, 5.7Gbps. The C-PHY is partitioned into a digital module – CIL (Control and Interface Logic) and a mixed-signal module. The PHY IP is provided as a combination of soft IP views (RTL, and STA Constraints) for the digital module, and hard IP views (GDSII/CDL/LEF/LIB) for the mixed-signal module. This unique offering of both soft and hard IP permits architectural design flexibility and seamless implementation in customer-specific design flow. The CIL module interfaces with the protocol layer and determines the global operation of the module. The interface between the PHY and the protocol is using the PHY-Protocol Interface (PPI). The mixed-signal module includes high-speed signaling mode for fast-data traffic and low-power signaling mode for control purposes. During normal operation, a lane switches between low-power and high-speed mode. Bidirectional lanes can also switch communication direction. The change of operating mode or direction requires enabling and disabling of certain electrical functions. These enable and disable events do not cause glitches on the lines that would result in a detection of incorrect signal levels. All mode and direction changes are smooth to always ensure a proper detection of the line signals. Mixel’s C-PHY is a complete PHY, silicon-proven at multiple foundries and multiple nodes. It is built to support the MIPI Camera Serial Interface (CSI) and Display Serial Interface (DSI).
The Mixel MIPI C/D-PHY combo IP (MXL-CPHY-DPHY) is a high-frequency low-power, low cost, physical layer compliant with the MIPI® Alliance Standard for C-PHY and D-PHY. (Learn more about Mixel’s MIPI ecosystem at Mixel MIPI Central which gives you access to Mixel’s best of class MIPI ecosystem supply chain partners.) The PHY can be configured as a MIPI Master or MIPI Slave, supporting camera interface CSI-2 v1.2 or display interface DSI v1.3 applications in the D-PHY mode. It also supports camera interface CSI-2 v1.3 and display interface DSI-2 v1.0 applications in the C-PHY mode. The high-speed signals have a low voltage swing, while low-power signals have large swing. High-Speed functions are used for high-speed data traffic while low-power functions are mostly used for control. The C-PHY is based on 3-Phase symbol encoding technology, delivering 2.28 bits per symbol over three-wire trios, operating with a symbol rate range of 80 to 4500 Msps per lane, which is the equivalent of about 182.8 to 10260 Mbps per lane. The D-PHY supports a bit rate range of 80 to 1500 Mbps per Lane without deskew calibration, and up to 4500 Mbps with deskew calibration. The low-power mode and escape mode are the same in both the D-PHY and C-PHY modes. To minimize EMI, the drivers for low-power mode are slew-rate controlled and current limited. The data rate in low-power mode is 10 Mbps. For a fixed clock frequency, the available data capacity of a PHY configuration can be increased by using more lanes. Effective data throughput can be reduced by employing burst mode communication. Mixel’s C-PHY/D-PHY combo is a complete PHY, silicon-proven at multiple foundries and multiple nodes. The C/D-PHY is fully integrated and has analog circuitry, digital, and synthesizable logic.
The agileADC analog-to-digital converter is a traditional Charge-Redistribution SAR ADC that is referenced to VDD, VSS. The architecture can achieve up to 12-bit resolution at sample rates up to 64 MSPS. It includes a 16-channel input multiplexor that can be configured to be buffered or unbuffered, and support differential or single-ended inputs. Agile Analog designs are based on tried and tested architectures to ensure reliability and functionality. Our automated design methodology is programmatic, systematic and repeatable leading to analog IP that is more verifiable, more robust and more reliable. Our methodology also allows us to quickly re-target our IP to different process options. Our highly configurable and multi-node analog IP products are developed to meet the customer’s exact requirements. These digitally-wrapped and verified solutions can be seamlessly integrated into any SoC, significantly reducing complexity, time and costs.
The agilePMU Subsystem is an efficient and highly integrated power management unit for SoCs/ASICs. Featuring a power-on-reset, multiple low drop-out regulators, and an associated reference generator. The agilePMU Subsystem is designed to ensure low power consumption while providing optimal power management capabilities. Equipped with an integrated digital controller, the agilePMU Subsystem offers precise control over start-up and shutdown, supports supply sequencing, and allows for individual programmable output voltage for each LDO. Status monitors provide real-time feedback on the current state of the subsystem, ensuring optimal system performance. Agile Analog designs are based on tried and tested architectures to ensure reliability and functionality. Our automated design methodology is programmatic, systematic and repeatable leading to analog IP that is more verifiable, more robust and more reliable. Our methodology also allows us to quickly re-target our IP to different process options. Our highly configurable and multi-node analog IP products are developed to meet the customer’s exact requirements. These digitally-wrapped and verified solutions can be seamlessly integrated into any SoC, significantly reducing complexity, time and costs.
The Mixel MIPI D-PHY IP (MXL-DPHY) is a high-frequency low-power, low cost, source-synchronous, physical layer compliant with the MIPI® Alliance Standard for D-PHY. (Learn more about Mixel’s MIPI ecosystem at Mixel MIPI Central which gives you access to Mixel’s best of class MIPI ecosystem supply chain partners.) Although primarily used for connecting cameras and display devices to a core processor, this MIPI PHY can also be used for many other applications. It is used in a master-slave configuration, where high-speed signals have a low voltage swing, and low-power signals have large swing. High-speed functions are used for high-speed data traffic while low-power functions are mostly used for control. The D-PHY is partitioned into a Digital Module – CIL (Control and Interface Logic) and a Mixed Signal Module. It is provided as a combination of Soft IP views (RTL, and STA Constraints) for Digital Module, and Hard IP views (GDSII/CDL/LEF/LIB) for the Mixed Signal Module. This unique offering of Soft and Hard IP permits architectural design flexibility and seamless implementation in customer-specific design flow. The CIL module interfaces with the protocol layer and determines the global operation of the lane module. The interface between the D-PHY and the protocol is called the PHY-Protocol Interface (PPI). During normal operation, the data lane switches between low-power mode and high-speed mode. Bidirectional lanes can also switch communication direction. The change of operating mode or direction requires enabling and disabling certain electrical functions. These enable and disable events do not cause glitches on the lines that would otherwise result in detections of incorrect signal levels. Therefore, all mode and direction changes occur smoothly, ensuring proper detection of the line signals. Mixel’s D-PHY is a complete PHY, silicon-proven at multiple foundries and multiple nodes. This MIPI PHY is fully integrated and has analog circuitry, digital, and synthesizable logic. Our D-PHY is built to support the MIPI Camera Serial Interface (CSI) and Display Serial Interface (DSI) using the PHY Protocol Interface (PPI). Mixel has provided this IP in many different configurations to accommodate different applications. The Universal Lane configuration can be used to support any allowed use-case, while other configurations are optimized for many different use cases such as Transmit only, Receive only, DSI, CSI, TX+ and RX+. Both TX+ and RX+ configurations support full-speed loopback operation without the extra area associated with a universal lane configuration.
Silicon Creations delivers precision LC-PLLs designed for ultra-low jitter applications requiring high-end performance. These LC-tank PLLs are equipped with advanced digital architectures supporting wide frequency tuning capabilities, primarily suited for converter and PHY applications. They ensure exceptional jitter performance, maintaining values well below 300fs RMS. The LC-PLLs from Silicon Creations are characterized by their capacity to handle fractional-N operations, with active noise cancellation features allowing for clean signal synthesis free of unwanted spurs. This architecture leads to significant power efficiencies, with some IPs consuming less than 10mW. Their low footprint and high frequency integrative capabilities enable seamless deployments across various chip designs, creating a perfect balance between performance and size. Particular strength lies in these PLLs' ability to meet stringent PCIe6 reference clocking requirements. With programmable loop bandwidth and an impressive tuning range, they offer designers a powerful toolset for achieving precise signal control within cramped system on chip environments. These products highlight Silicon Creations’ commitment to providing industry-leading performance and reliability in semiconductor design.
The 16-bit Sigma-Delta ADC operates with exceptional precision and versatility, leveraging 55nm SMIC CMOS technology. It offers programmable gain ranging from 0 to 50dB, catering to a variety of audio applications. The ADC features four fully differential inputs and integrated microphone biasing options to enhance its applicability in mono audio systems. This ADC supports a conversion rate of 16KSPS and is equipped with a digital serial interface, enabling seamless integration with diverse digital systems using PDM, I2S, or TDM protocols. It's designed to minimize power consumption while maintaining a strong signal-to-noise ratio of 90dB. The ADC is optimized for audio applications and its robust design includes power-down modes that reduce current to less than 1uA, ensuring efficiency without sacrificing performance.
iWave Global introduces the ARINC 818 Switch, a pivotal component in the management and routing of video data within avionics systems. Designed for applications that require efficient video data distribution and management, the switch is optimized for performance in environments with stringent data handling requirements. The switch's architecture supports a high level of bandwidth, allowing for the smooth routing of multiple video streams in real-time. Its design includes advanced features that ensure low-latency, error-free data transfer, integral to maintaining the integrity and reliability of video data in critical applications. Featuring robust interoperability characteristics, the ARINC 818 Switch easily integrates into existing systems, facilitating modular expansion and adaptability to new technological standards. It is indispensable for any aerospace project that involves complex video data management, providing a stable platform for video data routing and switching.
Silicon Creations' Free Running Oscillators provide dependable timing solutions for a range of applications such as watchdog timers and core clock generators in low-power systems. These oscillators, crafted with compactness and efficiency in mind, support a gamut of processes from 65nm to the latest 3nm technologies. These oscillators excel in low power consumption, often requiring less than 30µW during operation. Their robust design ensures they deliver high precision over a temperature range from -40°C to 125°C with supply voltage variabilities factored in. The simplicity in design negates the need for external components, promoting easier integration and reduced overall system complexity. Precise tuning capabilities allow for accuracy levels up to ±1.5% after process trimming, ensuring outstanding performance in volatile environmental conditions. This level of reliability makes them ideal for integration into various consumer electronics, automotive controls, and other precision-demanding applications where space and power constraints are critical.
The ARINC 818 Product Suite is a comprehensive solution set designed to support the entire lifecycle of ARINC 818 enabled equipment. This suite offers tools and resources essential for developing, qualifying, testing, and simulating ARINC 818 products. It is recognized for its robust design and ability to address the complexities of high-performance avionics systems. Within the product suite, users can access the ARINC 818 Development Suite and Flyable Products, providing a framework for both development and in-field application. The suite is indispensable for organizations aiming to integrate ARINC 818 into their systems, ensuring precise data handling and compatibility. Great River Technology's experience in crafting over 100 mission-critical systems is embedded into the suite, offering unmatched expertise and dependability. By leveraging this suite, companies can ensure the reliable operation and seamless integration of ARINC 818 technologies.
The Ring PLLs offered by Silicon Creations illustrate a versatile clocking solution, well-suited for numerous frequency generation tasks within integrated circuit designs. Known for their general-purpose and specialized applications, these PLLs are crafted to serve a massive array of industries. Their high configurability makes them applicable for diverse synthesis needs, acting as the backbone for multiple clocking strategies across different environments. Silicon Creations' Ring PLLs epitomize high integration with functions tailored for low jitter and precision clock generation, suitable for battery-operated devices and systems demanding high accuracy. Applications span from general clocking to precise Audio Codecs and SerDes configurations requiring dedicated performance metrics. The Ring PLL architecture achieves best-in-class long-term and period jitter performance with both integer and fractional modes available. Designed to support high volumes of frequencies with minimal footprint, these PLLs aid in efficient space allocation within system designs. Their use of silicon-proven architectures and modern validation methodologies assure customers of high reliability and quick integration into existing SoC designs, emphasizing low risk and high reward configurations.
The DAC solutions provided transform digital signals back into analog form, ensuring high fidelity and accuracy in the conversion process. This is crucial for applications that demand pristine audio outputs or precise control signals. Noteworthy for their minimal power consumption and high resolution, these DACs are suitable for both consumer electronics and professional audio equipment. Their advanced architecture ensures superior performance, enabling end-users to leverage the full potential of digital-to-analog conversion. Engineered for seamless integration into larger systems, they support various output ranges and resolutions to meet specific application demands. With a strong emphasis on maintaining signal integrity, these DACs provide consistent and reliable performance, making them a preferred choice for numerous technological solutions.
EW6181 is an IP solution crafted for applications demanding extensive integration levels, offering flexibility by being licensable in various forms such as RTL, gate-level netlist, or GDS. Its design methodology focuses on delivering the lowest possible power consumption within the smallest footprint. The EW6181 effectively extends battery life for tags and modules due to its efficient component count and optimized Bill of Materials (BoM). Additionally, it is backed by robust firmware ensuring highly accurate and reliable location tracking while offering support and upgrades. The IP is particularly suitable for challenging application environments where precision and power efficiency are paramount, making it adaptable across different technology nodes given the availability of its RF frontend.
The PDM-to-PCM Converter from Archband Labs leads in transforming pulse density modulation signals into pulse code modulation signals. This converter is essential in applications where high fidelity of audio signal processing is vital, including digital audio systems and communication devices. Archband’s solution ensures accurate conversion, preserving the integrity and clarity of the original audio. This converter is crafted to seamlessly integrate with a wide array of systems, offering flexibility and ease-of-use in various configurations. Its robust design supports a wide range of input frequencies, making it adaptable to different signal environments. The PDM-to-PCM Converter also excels in minimizing latency and reducing overhead processing times. It’s engineered for environments where precision and sound quality are paramount, ensuring that audio signals remain crisp and undistorted during conversion processes.
Silicon Creations crafts highly reliable LVDS interfaces designed to meet diverse application needs, going from bi-directional I/Os to specialized uni-directional configurations. Spanning process compatibilities from 90nm CMOS to advanced 7nm FinFET, these interfaces are a cornerstone for high-speed data communication systems, thriving particularly in video data transmission and chip-to-chip communications. Supporting robust data rates over multiple channels, the LVDS Interfaces guarantee flexible programmability and protocol compatibility with standards such as FPD-Link and Camera-Link. They capitalize on proven PLL and CDR architectures for superior signal integrity and error-free data transfers. Operating efficiently in various technology nodes, they remain highly effective across collaborative chipset environments. The interfaces are fortified with adaptable features like dynamic phase alignment to stabilize data sequences and on-die termination options for superior signal integrity. Their proven record places them as a critical enabler in applications where consistent high-speed data transfer is paramount, demonstrating Silicon Creations’ prowess in delivering industry-leading communication solutions.
With a focus on maintaining signal integrity in high-speed interfaces, the PCIe Retimer extends the reach of PCI Express connections while preserving data quality. Essential for long signal paths, it works by regenerating signals to boost performance and provide reliable connections across distances. The retimer is particularly effective in environments with substantial electromagnetic interference, ensuring data transmission remains error-free and efficient across extended cable runs. By including line equalization and using advanced clock recovery techniques, the PCIe Retimer strengthens signal quality, allowing for greater system performance and reliability in a wide array of computing applications.
Designed for high-speed transmission, the 16x112G Tx Chiplet showcases superior integration with 16 channels, each operating at 112Gbps. It includes a modulator and driver within a single silicon unit, optimized for optical communication systems requiring high-speed, high-bandwidth data transfer. This sophisticated chiplet ensures seamless modulation of optical signals, supporting efficient driver control and optimized data transmission. The integrated design simplifies system architecture, reducing the overall footprint while maintaining exceptional reliability and performance. Its built-in digital control aids in managing complex signal processing requirements, suitable for diverse applications within optical networking infrastructures. Verifying its design through silicon-proven processes assures users of its capability to meet rigorous industry standards. The application of this chiplet spans high-speed data centers, telecommunications networks, and beyond, where its efficiency and performance are indispensable. The innovation behind its creation reflects Enosemi's dedication to advancing optical technology, offering clients robust and reliable tools to meet current and future communication needs.
The 3D Imaging Chip is designed to enhance the capabilities of devices requiring advanced 3D sensing and imaging technology. With an emphasis on precision, this chip supports a myriad of applications ranging from security and surveillance systems to autonomous machinery. It integrates seamlessly not only into varied machine vision systems but also into devices used in different fields that rely on accurate depth perception. This 3D imaging solution underscores Altek's commitment to producing high-performance technology that aids in intricate environment analysis and decision-making processes. This chip employs cutting-edge algorithms to improve the depth perception capabilities of devices, ensuring that it can operate effectively in diverse environments from short to long range. By integrating seamlessly into complex systems, this product strengthens overall functionality, making it an indispensable component in robotics and automated systems. Its robust capacity to handle various environmental conditions also highlights its versatility in usage across different industries. Moreover, this imaging technology is meticulously crafted to reduce energy consumption while maintaining high processing speeds, which are critical in time-sensitive and energy-conscious applications. The sophistication of this chip lies in its ability to combine high-resolution data capture with fast data processing, providing users with the assurance of accuracy and efficiency in real-time operational settings. This positions it as a pivotal development for industries looking to adopt smarter and more efficient technological solutions.
The agileDAC is a digital-to-analog converter that uses a traditional capacitive DAC architecture. The agileDAC uses its own internal reference voltage. The architecture can achieve up to 10-bit resolution at sample rates up to 16 MSPS. Agile Analog designs are based on tried and tested architectures to ensure reliability and functionality. Our automated design methodology is programmatic, systematic and repeatable leading to analog IP that is more verifiable, more robust and more reliable. Our methodology also allows us to quickly re-target our IP to different process options. Our highly configurable and multi-node analog IP products are developed to meet the customer’s exact requirements. These digitally-wrapped and verified solutions can be seamlessly integrated into any SoC, significantly reducing complexity, time and costs.
The HOTLink II Product Suite is engineered to deliver advanced capabilities in high-speed data and video link technologies. It serves as an essential toolset for developing and implementing HOTLink II protocols effectively, catering to the specific needs of modern avionics systems requiring reliable and high-throughput data transfer. This suite includes various components that enable the seamless transmission and conversion of data, supporting both development and operational phases. Its design incorporates technologies that enhance data integrity and efficiency, making it integral to systems where performance and reliability are critical. Great River Technology ensures that each component of the HOTLink II suite is crafted with precision, providing comprehensive support and simplifying integration processes. The suite redounds to the extensive expertise of Great River Technology in the sector, reinforcing their standing as providers of pioneering solutions.
Silicon Creations' Analog Glue solutions provide essential analog functionalities to complete custom SoC designs seamlessly. These functional blocks, which constitute buffer and bandgap reference circuits, are vital for seamless on-chip clock distribution and ensure low-jitter operations. Analog Glue includes crucial components such as power-on reset (POR) generators and bridging circuits to support various protocols and interfaces within SoCs. These supplementary macros are crafted to complement existing PLLs and facilities like SerDes, securing reliable signal transmission under varied operating circumstances. Serving as the unsung heroes of chip integration, these Analog Glue functions mitigate the inevitable risks of complex SoC designs, supporting efficient design flows and effective population of chip real estate. Thus, by emphasizing critical system coherency, they enhance overall component functionality, providing a stable infrastructure upon which additional system insights can be leveraged.
The ARINC 818-3 IP Core from iWave Global represents an advancement in avionics video interface technology, designed for high-speed and high-fidelity video data transmission. This IP core addresses the needs of modern aerospace systems that require robust video communication links both for military and commercial use. It supports a wide array of enhancements over previous generations, including increased bandwidth and improved signal integrity. This ensures that the ARINC 818-3 IP Core can handle the demands of next-generation avionic systems seamlessly, supporting advanced video processing and display systems. The core's design prioritizes modularity and scalability, allowing for easy integration and expansion to meet evolving system requirements. It is positioned as an essential tool for aviation applications demanding high reliability and accuracy in video data handling and display solutions, making it indispensable for new and retrofitted aerospace projects.
The ePHY-5616 delivers data rates from 1 to 56Gbps across technology nodes of 16nm and 12nm. Designed for a diverse range of applications, this product offers superior BER and low latency, making it ideal for enterprise equipment like routers, switches, and network interface cards. The ePHY-5616 employs a highly configurable DSP-based receiver architecture designed to manage various insertion loss scenarios, from 10dB up to over 35dB. This ensures robust and reliable data transfer across multiple setups.
Polar ID is a groundbreaking biometric security solution designed for smartphones, providing a secure and convenient face unlock feature. Employing advanced meta-optic technology, Polar ID captures the polarization signature of a human face, offering an additional layer of security that easily identifies human tissue and foils sophisticated 3D mask attempts. This technology enables ultra-secure facial recognition in diverse environments, from daylight to complete darkness, without compromising on the user experience. Unlike traditional facial recognition systems, Polar ID operates using a simple, compact design that eliminates the need for multiple optical modules. Its unique capability to function in any lighting condition, including bright sunlight or total darkness, distinguishes it from conventional systems that struggle under such scenarios. Furthermore, the high resolution and precision of Polar ID ensure reliable performance even when users have their face partially obscured by sunglasses or masks. With its cost-effectiveness and small form factor, Polar ID is set to disrupt the mobile device market by making secure biometric authentication accessible to a broader range of smartphones, not just high-end models. By simplifying the integration of facial recognition technology, Polar ID empowers mobile devices to replace less secure, inconvenient fingerprint sensors, thus broadening the reach and applicability of facial biometrics in consumer electronics.
The Mixed-Signal CODEC offered by Archband Labs integrates advanced analog and digital audio processing to deliver superior sound quality. Designed for a variety of applications such as portable audio devices, automotive systems, and entertainment systems, this CODEC provides efficiency and high performance. With cutting-edge technologies, it handles complex signal conversions with minimal power consumption. This CODEC supports numerous interface standards, making it a versatile component in numerous audio architectures. It's engineered to offer precise sound reproduction and maintains audio fidelity across all use cases. The integrated components within the CODEC streamline design processes and reduce the complexity of audio system implementations. Furthermore, the Mixed-Signal CODEC incorporates features that support high-resolution audio, ensuring compatibility with high-definition sound systems. It's an ideal choice for engineers looking for a reliable and comprehensive audio processing solution.
Designed for performance computing, the pPLL03F-GF22FDX is an advanced all-digital fractional-N PLL developed for low-jitter and compact applications. It operates efficiently at clock frequencies reaching up to 4GHz, specifically crafted to meet the demands of performance computing blocks and ADCs/DACs that have moderate SNR prerequisites. A crucial aspect of its design is its compatibility with multi-PLL systems, enabling implementations in complex SoCs with numerous clock domains. Tailored for GlobalFoundries 22FDX, this IP ensures robust and reliable performance across varied PVT conditions.
The ORC3990 is a groundbreaking LEO Satellite Endpoint SoC engineered for use in the Totum DMSS Network, offering exceptional sensor-to-satellite connectivity. This SoC operates within the ISM band and features advanced RF transceiver technology, power amplifiers, ARM CPUs, and embedded memory. It boasts a superior link budget that facilitates indoor signal coverage. Designed with advanced power management capabilities, the ORC3990 supports over a decade of battery life, significantly reducing maintenance requirements. Its industrial temperature range of -40 to +85 degrees Celsius ensures stable performance in various environmental conditions. The compact design of the ORC3990 fits seamlessly into any orientation, further enhancing its ease of use. The SoC's innovative architecture eliminates the need for additional GNSS chips, achieving precise location fixes within 20 meters. This capability, combined with its global LEO satellite coverage, makes the ORC3990 a highly attractive solution for asset tracking and other IoT applications where traditional terrestrial networks fall short.
The VCO24G is engineered as a 24GHz Colpitts Voltage-Controlled Oscillator, offering low noise performance and a differential architecture ideal for integrating within PLL systems and broadband testing environments. This VCO capitalizes on the low-cost, high-output capabilities of the 0.18um SiGe process, ensuring it meets rigorous demands for precision and long-term reliability in various telecommunication applications. Its design lends itself to high-frequency operations with exceptional signal stability.
Dillon Engineering's 2D FFT core delivers robust performance for transforming two-dimensional data sets into the frequency domain with high precision and efficiency. By leveraging both internal and external memory between dual FFT engines, this core optimizes the data processing pipeline, ensuring fast and reliable results even as data complexity increases. Ideal for applications that handle image processing and data matrix transformations, the 2D FFT core navigates data bandwidth constraints with ease, maintaining throughput even for larger data sets. This core's design maximizes data accuracy and minimizes processing delays, crucial for applications requiring precise image recognition and analysis. Thanks to the adaptable nature provided by Dillon's ParaCore Architect, this IP core is easily customized for various FPGA and ASIC environments. Its flexibility and robust processing capabilities make the 2D FFT core a key component for cutting-edge applications in fields where data translation and processing are critical.
ISELED is an innovative technology that revolutionizes automotive interior lighting by integrating all necessary hardware functions for fully software-defined lighting. It features smart RGB LEDs which are pre-calibrated by manufacturers, ensuring consistent color temperature and exceptional lighting quality. This technology simplifies the integration process by allowing users to send simple digital commands to control the color output of the LEDs without needing additional complex setups for color mixing and temperature compensation. ISELED is equipped to handle synchronous lighting displays and dynamic effects across vehicle interiors. The connectivity aspect of ISELED is enhanced by its ILaS protocol, allowing direct cable connections between lighting systems and enabling efficient power conversion. This makes it suitable for applications requiring resilience in communication, despite potential power failures on the board. With capabilities for bridging data over Ethernet, ISELED supports centralized control and synchronization from a vehicle's ECU.
The agileVGLITCH voltage monitor provides security and protection against voltage side-channel attacks (SCAs) and tampering such as supply voltage changes/glitches and power supply manipulation. The sensor provides digital outputs to warn (secure) processors of intrusion attempts, thus enabling a holistic approach to hardware security. As a key part of the agileSCA TVC (Temperature, Voltage, Clock) security sensor this can be tuned to your specifications. It is ideally suited for monitoring in application areas such as IoT, AI, security and automotive. Agile Analog designs are based on tried and tested architectures to ensure reliability and functionality. Our automated design methodology is programmatic, systematic and repeatable leading to analog IP that is more verifiable, more robust and more reliable. Our methodology also allows us to quickly re-target our IP to different process options. Our highly configurable and multi-node analog IP products are developed to meet the customer’s exact requirements. These digitally-wrapped and verified solutions can be seamlessly integrated into any SoC, significantly reducing complexity, time and costs.
CT25203 is an Analog Front-End IP core compliant with IEEE 802.3cg standard for 10BASE-T1S applications. It is part of Canova Tech's strategic offerings in analog domain, enhancing high-performance communication. The IP supports integral interoperability with digital PHYs, such as the CT25205, and is designed to operate with a high-voltage process technology, ensuring exceptional electromagnetic compatibility (EMC) performance. Its features facilitate reliable communication for industrial and automotive applications, proven in diverse environments.
Laser Triangulation Sensors are cutting-edge devices designed for precise non-contact measurement and position verification. These sensors are engineered to offer unmatched accuracy, operating within a range from 2 mm to 2.5 meters with a minimal measuring error of ±1 µm. They utilize both BLUE and IR laser bases, providing a sampling frequency of 160 kHz to ensure rapid and reliable data capture. The robust and versatile nature of these sensors makes them ideal for a wide range of industrial applications, offering superior performance in dynamic environments. The sensors are part of the RF603, RF602, RF603HS, RF600, RF605, RF609, and RF60i series. They are meticulously designed to function effectively in harsh industrial settings, maintaining efficiency and precision without physical contact. The Triangulation Sensors form an integral part of automation processes, where precise position checking and measuring are pivotal. Equipped with blue and infrared lasers, they offer high adaptability, allowing them to cater to various measurement needs across multiple disciplines. Whether for ensuring the correct positioning of components on assembly lines or verifying measurements within quality assurance processes, these sensors deliver reliable performance and adaptability.
The Aeonic Power family offers scalable on-die voltage regulation tailored to the power delivery needs of high-performance ICs and chiplets. Featuring a flexible architecture, Aeonic Power solutions enable energy optimization through per-core DVFS, static IR drop mitigation, and the creation of virtual power islands. These products provide observability and noise suppression capabilities, simplifying power distribution for die-to-die interfaces and facilitating enhanced PDN robustness. By integrating sophisticated telemetry, Aeonic Power empowers design teams with unparalleled insights into power behavior and optimizes the power distribution network for energy-efficient operations.
Clock Generation IP from Analog Circuit Works facilitates the creation of precise timing and control signals needed in complex electronic systems. These solutions are vital in synchronizing various parts of a system, ensuring they operate coherently and efficiently. The ability to generate high-frequency clocks with minimal jitter and low power consumption distinguishes these offerings. They cater to a range of applications from consumer electronics to industrial machinery, where reliable clock distribution is paramount. With flexibility to integrate with different process technologies, they provide an essential component for developing advanced multi-core processing systems and other synchronized systems. This IP is engineered to deliver consistent performance with respect to both phase noise and power efficiency.
The Bandgap reference from SkyeChip provides a stable voltage reference crucial for reliable circuit operation over varying temperature and power supply conditions. This reference boasts an output voltage of 0.9V with a 1% tolerance, catering to precise voltage regulation demands. Designed to handle output currents of 50uA with 10% variance, this bandgap is tailored for applications needing stable voltage references in fluctuating operating conditions. The robust design ensures operation over temperatures ranging from -40°C to 125°C, accommodating extensive environmental conditions. Notably efficient, it consumes less than 500μW, crucial for low power consumption applications, enhancing overall device energy efficiency. This makes the bandgap suitable for portable and battery-operated devices where reliability and power efficiency are paramount.
The Chipchain C100 is a pioneering solution in IoT applications, providing a highly integrated single-chip design that focuses on low power consumption without compromising performance. Its design incorporates a powerful 32-bit RISC-V CPU which can reach speeds up to 1.5GHz. This processing power ensures efficient and capable computing for diverse IoT applications. This chip stands out with its comprehensive integrated features including embedded RAM and ROM, making it efficient in both processing and computing tasks. Additionally, the C100 comes with integrated Wi-Fi and multiple interfaces for transmission, broadening its application potential significantly. Other notable features of the C100 include an ADC, LDO, and a temperature sensor, enabling it to handle a wide array of IoT tasks more seamlessly. With considerations for security and stability, the Chipchain C100 facilitates easier and faster development in IoT applications, proving itself as a versatile component in smart devices like security systems, home automation products, and wearable technology.
The Ultra-Low Latency 10G Ethernet MAC IP core by Chevin Technology exemplifies cutting-edge design for high-speed network communications, catered specifically to deliver the lowest possible latency. It is meticulously constructed to meet the demands of applications that require minimal delay in data exchange, thus maximising data throughput. The IP core is finely tuned for deployment in FPGAs, optimizing the balance between performance and resource utilization. Benefiting from a streamlined logic architecture, this IP core enhances the efficiency of hardware accelerations and simplifies the incorporation of Ethernet connectivity into customer systems. Its fundamental construction is rooted in Chevin’s extensive experience with Ethernet technologies and it has been thoroughly tested to ensure reliable operation across a diverse range of settings. This Ethernet MAC utilises all-logic architecture which removes need for additional CPU or software intervention, providing immense power savings and reduced system complexity. Features like programmable interframe gap control and flexible licensing allow for the tailored installation in both traditional and contemporary systems. The combination of robust performance capabilities alongside expert support creates a compelling choice for integrators focused on high-speed, low-latency Ethernet solutions.
The REFS, a robust band-gap and PTAT current reference, is designed to bolster RF, analog, and mixed-signal integrated circuits with significant stability even across varied operational conditions. This component outputs currents and voltages that remain consistent against temperature fluctuations, making it indispensable in high-precision electronic environments. It features multiple outputs referenced to both internal and external resistors, all of which are programmable within a flexibility range of ±30% to support custom calibration needs.
The aLFA-C sensor represents a breakthrough in detection capabilities, specifically engineered for hyperspectral imaging applications. It is poised to meet the demanding needs of environments requiring high fidelity in capturing the full spectrum of light. This sensor is especially vital for tasks that involve detailed environmental monitoring and scientific data collection. The unique design of aLFA-C leverages CMOS technology to provide exceptional sensitivity across various wavelengths, making it adept at both visible and invisible spectrum recognition. It is equipped to deliver detailed and precise imaging for applications ranging from environmental science to advanced material inspections, thanks to its enhanced dynamic range and reduced noise features. With its adaptable design, aLFA-C enables users to customize settings for specific applications, allowing for the optimization of imaging results for diverse scientific inquiries. Its integration into hyperspectral instruments and infrastructures underlines Caeleste's commitment to offering cutting-edge solutions that form the backbone of sophisticated imaging systems worldwide.
The TW330 is part of TAKUMI’s robust line of graphics solutions, showcasing a refined architecture specifically for optimizing embedded system graphics. This product extends TAKUMI's reputation for producing effective hardware solutions that balance performance with low power consumption and minimal CPU load. Especially suitable for digital display devices, the TW330 offers a pronounced efficiency in graphics rendering, setting the stage for enhanced visuals and user interactivity. It aligns with application needs that require impressive performance without compromise on power. By elevating graphics capabilities, the TW330 continues to serve the needs of sophisticated graphic systems. It remains a testament to TAKUMI's innovation in providing top-of-the-line graphics IP solutions to meet the high expectations of today's digital technology demands.
The ADQ35 is a high-throughput digitizer designed for critical signal processing applications. Known for its 12-bit accuracy and high sampling rates, it stands out in delivering up to 10 GSPS, supporting single or dual-channel data streams. This ensures data integrity and speed for applications that demand precision and reliability, such as telecommunications and high-speed imaging. Equipped with enhanced processing capabilities, the ADQ35 ensures superior handling of complex datasets, making it suitable for scientific research and advanced electronics projects. Its robust design caters to the needs of modern digital systems, allowing for a seamless integration into existing infrastructure to facilitate expansive projects. This device also features streaming capabilities that provide a continuous flow of high-quality data, excelling in applications that require constant monitoring and data analysis. The ADQ35 digitizer is an excellent choice for industries that rely on swift and accurate data interpretation, enhancing overall system performance and technical output.
The agileCMP programmable threshold comparator features a user-selectable (enable/disable) hysteresis as well as programmable threshold with 10mV step size, a latched output as well as an active (unlatched) output. With a focus on long battery life, the agileCMP can be used to monitor external analog signals and enable wake-up events as is essential in many modern SoCs. The agileCMP programmable threshold comparator is ideally suited for interrupt generation in application areas such as HPC, IoT, security, automotive and AI. Agile Analog designs are based on tried and tested architectures to ensure reliability and functionality. Our automated design methodology is programmatic, systematic and repeatable leading to analog IP that is more verifiable, more robust and more reliable. Our methodology also allows us to quickly re-target our IP to different process options. Our highly configurable and multi-node analog IP products are developed to meet the customer’s exact requirements. These digitally-wrapped and verified solutions can be seamlessly integrated into any SoC, significantly reducing complexity, time and costs.
The THOR platform is a versatile tool for developing application-specific NFC sensor and data logging solutions. It incorporates silicon-proven IP blocks, creating a comprehensive ASIC platform suitable for rigorous monitoring and continuous data logging applications across various industries. THOR is designed for accelerated development timelines, leveraging low power and high-security features. Equipped with multi-protocol NFC capabilities and integrated temperature sensors, the THOR platform supports a wide range of external sensors, enhancing its adaptability to diverse monitoring needs. Its energy-efficient design allows operations via energy harvesting or battery power, ensuring sustainability in its applications. This platform finds particular utility in sectors demanding precise environmental monitoring and data management, such as logistics, pharmaceuticals, and industrial automation. The platform's capacity for AES/DES encrypted data logging ensures secure data handling, making it a reliable choice for sectors with stringent data protection needs.
The Time-Triggered Protocol (TTP) is a technology that offers deterministic communication for distributed real-time systems. This protocol is vital in applications where timing precision is crucial, such as in the aerospace industry, ensuring tasks are executed at precisely scheduled intervals. TTP is known for its reliability, configuring data communication parameters by defining send/receive slots within a network, and is adaptable for use in high-integrity systems like those found in avionics and deep space missions. This protocol underpins systems where fault-tolerance and coordination are necessary across diverse nodes within the network, offering a redundant communication pathway that safeguards against data loss. With this protocol, TTTech ensures that methodologies for verification and scheduling are incorporated into the systems, facilitating smoother qualification and certification in civil aviation projects. TTP is also SAE AS6003 compliant, meeting the stringent requirements needed for critical applications and ensuring compatibility with various forms of systems, including both integrated circuits and more complex system-on-chip arrangements. Widely acknowledged in industries demanding high reliability, TTP continues to support industry needs for robust protocol solutions.
Systems4Silicon's Digital PreDistortion (DPD) Solution is designed to significantly enhance the power efficiency of RF power amplifiers. This subsystem is complete and adaptive, providing a scalable solution that transcends the limitations typical of vendor-specific dependencies. On account of its universal compatibility, this IP core can be compiled for any ASIC or FPGA/SoC platform, serving as an all-encompassing solution suited for a diverse array of wireless communication systems such as 5G and multi-carrier setups. One of the standout features of the DPD technology is its capability to improve transmission bandwidth efficiently, offering scalability for bandwidths of up to 1 GHz or more. This positions the DPD solution as a forward-thinking technology, catering to modern demands for higher data rates and broader communication ranges. The adaptive nature of the solution ensures that it can modulate performance parameters in real-time, responding dynamically to varying operational conditions and system requirements, thereby maximizing amplifier efficiency across different setups. In operational terms, the DPD Solution is field-proven, reflecting its reliability and performance in real-world applications. It represents a versatile technology that integrates seamlessly with existing systems, delivering a robust enhancement to power amplifier efficiency while maintaining high compatibility with emerging communication standards. The flexibility of this technology makes it a vital asset in the infrastructure of contemporary wireless networks, ensuring smooth and efficient signal transmission.
The Mixel MIPI M-PHY (MXL-MPHY) is a high-frequency low-power, Physical Layer IP that supports the MIPI® Alliance Standard for M-PHY. (Learn more about Mixel’s MIPI ecosystem at Mixel MIPI Central which gives you access to Mixel’s best of class MIPI ecosystem supply chain partners.) The IP can be used as a physical layer for many applications, connecting flash memory-based storage, cameras and RF subsystems, and for providing chip-to-chip inter-processor communications (IPC). It supports MIPI UniPro and JEDEC Universal Flash Storage (UFS) standard. By using efficient BURST mode operation with scalable speeds, significant power savings can be obtained. Selection of signal slew rate and amplitude allows reduction of EMI/RFI, while maintaining low bit error rates.
The 802.11ah HaLow Transceiver is engineered to fulfill the demands of modern IoT applications, where low power consumption and extended range are critical. It aligns with the IEEE 802.11ah standard, commonly termed as Wi-Fi HaLowâ„¢, and offers exceptional flexibility for new generations of IoT and mobile devices.\n\nBoasting features like low noise direct conversion and integrated calibration for I/Q pathways, this transceiver supports multiple modulation bandwidths, including 1 MHz, 2 MHz, and up to 4 MHz. With its capabilities spanning significant frequency ranges, the design ensures stable connectivity with minimum latency and enhanced receiver sensitivity.\n\nOne of its strengths lies in extensibility, providing superb integration potential either as a part of a broader system-on-chip (SoC) or as a standalone communication module. Designed with minimal power draw, it also allows using external power amplifiers to enhance transmission power, aligning with diverse application needs such as asset tracking, building security, and broader sensor networks.
The MXL-LVDS-MIPI-RX is a high-frequency, low-power, low-cost, source-synchronous, Physical Layer that supports the MIPI® Alliance Standard for D-PHY and compatible with the TIA/EIA-644 LVDS standard. (Learn more about Mixel’s MIPI ecosystem at Mixel MIPI Central which gives you access to Mixel’s best of class MIPI ecosystem supply chain partners.) The IP is configured as a MIPI slave and consists of 5 lanes: 1 Clock lane and 4 data lanes, which make it suitable for display serial interface applications (DSI). The High-Speed signals have a low voltage swing, while Low-Power signals have large swing. High-Speed functions are used for High-Speed Data traffic while low power functions are mostly used for control.
Join the world's most advanced semiconductor IP marketplace!
It's free, and you'll get all the tools you need to discover IP, meet vendors and manage your IP workflow!
Join the world's most advanced AI-powered semiconductor IP marketplace!
It's free, and you'll get all the tools you need to advertise and discover semiconductor IP, keep up-to-date with the latest semiconductor news and more!
Plus we'll send you our free weekly report on the semiconductor industry and the latest IP launches!