Find IP Sell IP AI Assistant Chip Talk Chip Videos About Us
Log In

All IPs > Processor

Processor Semiconductor IPs

The 'Processor' category in the Silicon Hub Semiconductor IP catalog is a cornerstone of modern electronic device design. Processor semiconductor IPs serve as the brain of electronic devices, driving operations, processing data, and performing complex computations essential for a multitude of applications. These IPs include a wide variety of specific types such as CPUs, DSP cores, and microcontrollers, each designed with unique capabilities and applications in mind.

In this category, you'll find building blocks, which are fundamental components for constructing more sophisticated processors, and coprocessors that augment the capabilities of a main processor, enabling efficient handling of specialized tasks. The versatility of processor semiconductor IPs is evident in subcategories like AI processors, audio processors, and vision processors, each tailored to meet the demands of today’s smart technologies. These processors are central to developing innovative products that leverage artificial intelligence, enhance audio experiences, and enable complex image processing capabilities, respectively.

Moreover, there are security processors that empower devices with robust security features to protect sensitive data and communications, as well as IoT processors and wireless processors that drive connectivity and integration of devices within the Internet of Things ecosystem. These processors ensure reliable and efficient data processing in increasingly connected and smart environments.

Overall, the processor semiconductor IP category is pivotal for enabling the creation of advanced electronic devices across a wide range of industries, from consumer electronics to automotive systems, providing the essential processing capabilities needed to meet the ever-evolving technological demands of today's world. Whether you're looking for individual processor cores or fully integrated processing solutions, this category offers a comprehensive selection to support any design or application requirement.

All semiconductor IP
431
IPs available
Processor
A/D Converter Amplifier Analog Comparator Analog Filter Analog Front Ends Analog Multiplexer Analog Subsystems Coder/Decoder D/A Converter DLL Graphics & Video Modules Other Oversampling Modulator Photonics PLL Power Management RF Modules Sensor Switched Cap Filter Temperature Sensor CAN CAN XL CAN-FD FlexRay LIN Other Safe Ethernet Arbiter Audio Controller Clock Generator CRT Controller DMA Controller GPU Input/Output Controller Interrupt Controller Keyboard Controller LCD Controller Other Peripheral Controller Receiver/Transmitter Timer/Watchdog VME Controller AMBA AHB / APB/ AXI CXL D2D Gen-Z HDMI I2C IEEE 1394 IEEE1588 Interlaken MIL-STD-1553 MIPI Multi-Protocol PHY PCI PCMCIA PowerPC RapidIO SAS SATA Smart Card USB V-by-One VESA Embedded Memories I/O Library Other Standard cell DDR Flash Controller HBM Mobile DDR Controller Mobile SDR Controller NAND Flash ONFI Controller Other RLDRAM Controller SD SDRAM Controller SRAM Controller 2D / 3D ADPCM Audio Interfaces AV1 Camera Interface CSC DVB H.264 H.265 Image Conversion JPEG JPEG 2000 MPEG / MPEG2 MPEG 4 QOI TICO VC-2 HQ VGA WMA WMV Network on Chip Multiprocessor / DSP Processor Core Dependent Processor Core Independent AI Processor Audio Processor Building Blocks Coprocessor CPU DSP Core IoT Processor Microcontroller Other Processor Cores Security Processor Vision Processor Wireless Processor Content Protection Software Cryptography Cores Cryptography Software Library Embedded Security Modules Other Platform Security Security Protocol Accelerators Security Subsystems 3GPP-5G 3GPP-LTE 802.11 802.16 / WiMAX Bluetooth CPRI Digital Video Broadcast GPS JESD 204A / JESD 204B NFC OBSAI UWB W-CDMA Wireless USB ATM / Utopia CEI Cell / Packet Error Correction/Detection Ethernet Fibre Channel Interleaver/Deinterleaver Modulation/Demodulation Optical/Telecom
Vendor

Akida Neural Processor IP

BrainChip's Akida Neural Processor IP is a groundbreaking development in neuromorphic processing, designed to mimic the human brain in interpreting sensory inputs. By implementing an event-based architecture, it processes only the critical data at the point of acquisition, achieving unparalleled performance with significantly reduced power consumption. This architecture enables on-chip learning, reducing dependency on cloud processing, thus enhancing privacy and security.\n\nThe Akida Neural Processor IP supports incremental learning and high-speed inference across a vast range of applications, making it highly versatile. It is structured to handle data sparsity effectively, which cuts down on operations substantially, leading to considerable improvements in efficiency and responsiveness. The processor's scalability and compact design allow for wide deployment, from minimal-node setups for ultra-low power operations to more extensive configurations for handling complex tasks.\n\nImportantly, the Akida processor uses a fully customizable AI neural processor that leverages event-based processing and an on-chip mesh network for seamless communication. The technology also features support for hybrid quantized weights and provides robust tools for integration, including fully synthesizable RTL IP packages, hardware-based event processing, and on-chip learning capabilities.

BrainChip
TSMC
28nm
AI Processor, Coprocessor, CPU, Digital Video Broadcast, Network on Chip, Platform Security, Vision Processor
View Details

Akida 2nd Generation

The Akida 2nd Generation is an evolution of BrainChip's innovative neural processor technology. It builds upon its predecessor's strengths by delivering even greater efficiency and a broader range of applications. The processor maintains an event-based architecture that optimizes performance and power consumption, providing rapid response times suitable for edge AI applications that prioritize speed and privacy.\n\nThis next-generation processor enhances accuracy with support for 8-bit quantization, which allows for finer grained processing capabilities and more robust AI model implementations. Furthermore, it offers extensive scalability, supporting configurations from a few nodes for low-power needs to many nodes for handling more complex cognitive tasks. As with the previous version, its architecture is inherently cloud-independent, enabling inference and learning directly on the device.\n\nAkida 2nd Generation continues to push the boundaries of AI processing at the edge by offering enhanced processing capabilities, making it ideal for applications demanding high accuracy and efficiency, such as automotive safety systems, consumer electronics, and industrial monitoring.

BrainChip
TSMC
28nm
AI Processor, CPU, Digital Video Broadcast, IoT Processor, Multiprocessor / DSP, Network on Chip, Security Protocol Accelerators, Vision Processor
View Details

KL730 AI SoC

The KL730 is a sophisticated AI System on Chip (SoC) that embodies Kneron's third-generation reconfigurable NPU architecture. This SoC delivers a substantial 8 TOPS of computing power, designed to efficiently handle CNN network architectures and transformer applications. Its innovative NPU architecture significantly optimizes DDR bandwidth, providing powerful video processing capabilities, including supporting 4K resolution at 60 FPS. Furthermore, the KL730 demonstrates formidable performance in noise reduction and low-light imaging, positioning it as a versatile solution for intelligent security, video conferencing, and autonomous applications.

Kneron
TSMC
28nm
2D / 3D, A/D Converter, AI Processor, Amplifier, Audio Interfaces, Camera Interface, Clock Generator, CPU, CSC, GPU, Image Conversion, JPEG, USB, VGA, Vision Processor
View Details

MetaTF

MetaTF is BrainChip's proprietary software development framework built to streamline the creation, training, and deployment of neural networks on their Akida neuromorphic processor. This tool is designed specifically for working with edge AI, complementing the hardware capabilities of Akida by providing a rich environment for model development and conversion.\n\nThe framework supports the conversion of traditional TensorFlow and Keras models into spiking neural networks optimized for BrainChip's unique event-based processing. This conversion allows developers to harness the energy efficiency and performance benefits of the Akida architecture without needing to overhaul existing machine learning frameworks.\n\nMetaTF facilitates the adaptation of models to the Akida system through its model zoo, which includes various pre-configured network models, and offers comprehensive tools for simulation and testing. This environment makes it an indispensable resource for businesses aiming to deploy sophisticated AI applications at the edge, minimizing development time while maximizing performance and efficiency.

BrainChip
AI Processor, Coprocessor, Processor Core Independent
View Details

Speedcore Embedded FPGA IP

Speedcore embedded FPGA (eFPGA) IP represents a notable advancement in integrating programmable logic into ASICs and SoCs. Unlike standalone FPGAs, eFPGA IP lets designers tailor the exact dimensions of logic, DSP, and memory needed for their applications, making it an ideal choice for areas like AI, ML, 5G wireless, and more. Speedcore eFPGA can significantly reduce system costs, power requirements, and board space while maintaining flexibility by embedding only the necessary features into production. This IP is programmable using the same Achronix Tool Suite employed for standalone FPGAs. The Speedcore design process is supported by comprehensive resources and guidance, ensuring efficient integration into various semiconductor projects.

Achronix
TSMC
All Process Nodes
Processor Cores
View Details

Metis AIPU PCIe AI Accelerator Card

The Metis AIPU PCIe AI Accelerator Card offers exceptional performance for AI workloads demanding significant computational capacity. It is powered by a single Metis AIPU and delivers up to 214 TOPS, catering to high-demand applications such as computer vision and real-time image processing. This PCIe card is integrated with the Voyager SDK, providing developers with a powerful yet user-friendly software environment for deploying complex AI applications seamlessly. Designed for efficiency, this accelerator card stands out by providing cutting-edge performance without the excessive power requirements typical of data center equipment. It achieves remarkable speed and accuracy, making it an ideal solution for tasks requiring fast data processing and inference speeds. The PCIe card supports a wide range of AI application scenarios, from enhancing existing infrastructure capabilities to integrating with new, dynamic systems. Its utility in various industrial settings is bolstered by its compatibility with the suite of state-of-the-art neural networks provided in the Axelera AI ecosystem.

Axelera AI
2D / 3D, AI Processor, AMBA AHB / APB/ AXI, Building Blocks, Multiprocessor / DSP, Processor Core Dependent, Processor Core Independent, Processor Cores, Vision Processor, WMV
View Details

Yitian 710 Processor

The Yitian 710 Processor is an advanced Arm-based server chip developed by T-Head, designed to meet the extensive demands of modern data centers and enterprise applications. This processor boasts 128 high-performance Armv9 CPU cores, each coupled with robust caches, ensuring superior processing speeds and efficiency. With a 2.5D packaging technology, the Yitian 710 integrates multiple dies into a single unit, facilitating enhanced computational capability and energy efficiency. One of the key features of the Yitian 710 is its memory subsystem, which supports up to 8 channels of DDR5 memory, achieving a peak bandwidth of 281 GB/s. This configuration guarantees rapid data access and processing, crucial for high-throughput computing environments. Additionally, the processor is equipped with 96 PCIe 5.0 lanes, offering a dual-direction bandwidth of 768 GB/s, enabling seamless connectivity with peripheral devices and boosting system performance overall. The Yitian 710 Processor is meticulously crafted for applications in cloud services, big data analytics, and AI inference, providing organizations with a robust platform for their computing needs. By combining high core count, extensive memory support, and advanced I/O capabilities, the Yitian 710 stands as a cornerstone for deploying powerful, scalable, and energy-efficient data processing solutions.

T-Head
AI Processor, AMBA AHB / APB/ AXI, Audio Processor, CPU, Microcontroller, Multiprocessor / DSP, Processor Core Independent, Processor Cores, Vision Processor
View Details

Metis AIPU M.2 Accelerator Module

The Metis AIPU M.2 Accelerator Module is designed for edge AI applications that demand high-performance inference capabilities. This module integrates a single Metis AI Processing Unit (AIPU), providing an excellent solution for AI acceleration within constrained devices. Its capability to handle high-speed data processing with limited power consumption makes it an optimal choice for applications requiring efficiency and precision. With 1GB of dedicated DRAM memory, it seamlessly supports a wide array of AI pipelines, ensuring rapid integration and deployment. The design of the Metis AIPU M.2 module is centered around maximizing performance without excessive energy consumption, making it suitable for diverse applications such as real-time video analytics and multi-camera processing. Its compact form factor eases incorporation into various devices, delivering robust performance for AI tasks without the heat or power trade-offs typically associated with such systems. Engineered to problem-solve current AI demands efficiently, the M.2 module comes supported by the Voyager SDK, which simplifies the integration process. This comprehensive software suite empowers developers to build and optimize AI models directly on the Metis platform, facilitating a significant reduction in time-to-market for innovative solutions.

Axelera AI
2D / 3D, AI Processor, AMBA AHB / APB/ AXI, Building Blocks, CPU, Processor Core Dependent, Processor Cores, Vision Processor, WMV
View Details

AI Camera Module

The AI Camera Module by Altek Corporation exemplifies cutting-edge image capture technology, integrating both hardware and software to deliver high-quality, intelligent imaging solutions. This module is built on robust AI frameworks allowing it to adapt and optimize image processing based on specific application needs. It finds use in areas where high-resolution and real-time processing are essential, such as security systems and automotive industries.<br/><br/>Equipped with versatile imaging sensors, the AI Camera Module ensures excellent picture quality even in challenging lighting conditions, thanks to its AI-driven image enhancement algorithms. It supports edge computing, which reduces latency and enhances the speed of image analysis, thus providing timely insights and data processing right on the device itself.<br/><br/>This camera module stands out for its interoperability with IoT devices, paving the way for a more interconnected and intelligent ecosystem. Its advanced features such as facial detection, motion tracking, and object recognition empower users across various domains, from consumer electronics to industrial solutions, making it an indispensable tool for modern digital infrastructures.

Altek Corporation
Samsung, TSMC
10nm, 12nm
Audio Interfaces, Image Conversion, IoT Processor, JPEG, Receiver/Transmitter, SATA, Vision Processor
View Details

NMP-750

The NMP-750 is a high-performance accelerator designed for edge computing, particularly suited for automotive, AR/VR, and telecommunications sectors. It boasts an impressive capacity of up to 16 TOPS and 16 MB local memory, powered by a RISC-V or Arm Cortex-R/A 32-bit CPU. The three AXI4 interfaces ensure seamless data transfer and processing. This advanced accelerator supports multifaceted applications such as mobility control, building automation, and multi-camera processing. It's designed to cope with the rigorous demands of modern digital and autonomous systems, offering substantial processing power and efficiency for intensive computational tasks. The NMP-750's ability to integrate into smart systems and manage spectral efficiency makes it crucial for communications and smart infrastructure management. It helps streamline operations, maintain effective energy management, and facilitate sophisticated AI-driven automation, ensuring that even the most complex data flows are handled efficiently.

AiM Future
AI Processor, CPU, IoT Processor, Microcontroller, Multiprocessor / DSP, Processor Core Dependent
View Details

Tianqiao-70 Low-Power Commercial Grade 64-bit RISC-V CPU

Designed for extreme low-power environments, the Tianqiao-70 RISC-V CPU core emphasizes energy efficiency while maintaining sufficient computational strength for commercial applications. It serves scenarios where low power consumption is critical, such as mobile devices, desktop applications, AI, and autonomous systems. This model caters to the requirements of energy-conscious markets, facilitating operations that demand efficiency and performance within minimal power budgets.

StarFive
AI Processor, CPU, Multiprocessor / DSP, Processor Cores
View Details

GenAI v1

RaiderChip's GenAI v1 is a pioneering hardware-based generative AI accelerator, designed to perform local inference at the Edge. This technology integrates optimally with on-premises servers and embedded devices, offering substantial benefits in privacy, performance, and energy efficiency over traditional hybrid AI solutions. The design of the GenAI v1 NPU streamlines the process of executing large language models by embedding them directly onto the hardware, eliminating the need for external components like CPUs or internet connections. With its ability to support complex models such as the Llama 3.2 with 4-bit quantization on LPDDR4 memory, the GenAI v1 achieves unprecedented efficiency in AI token processing, coupled with energy savings and reduced latency. What sets GenAI v1 apart is its scalability and cost-effectiveness, significantly outperforming competitive solutions such as Intel Gaudi 2, Nvidia's cloud GPUs, and Google's cloud TPUs in terms of memory efficiency. This solution maximizes the number of tokens generated per unit of memory bandwidth, thus addressing one of the primary limitations in generative AI workflow. Furthermore, the adept memory usage of GenAI v1 reduces the dependency on costly memory types like HBM, opening the door to more affordable alternatives without diminishing processing capabilities. With a target-agnostic approach, RaiderChip ensures the GenAI v1 can be adapted to various FPGAs and ASICs, offering configuration flexibility that allows users to balance performance with hardware costs. Its compatibility with a wide range of transformers-based models, including proprietary modifications, ensures GenAI v1's robust placement across sectors requiring high-speed processing, like finance, medical diagnostics, and autonomous systems. RaiderChip's innovation with GenAI v1 focuses on supporting both vanilla and quantized AI models, ensuring high computation speeds necessary for real-time applications without compromising accuracy. This capability underpins their strategic vision of enabling versatile and sustainable AI solutions across industries. By prioritizing integration ease and operational independence, RaiderChip provides a tangible edge in applying generative AI effectively and widely.

RaiderChip
GLOBALFOUNDRIES, TSMC
28nm, 65nm
AI Processor, AMBA AHB / APB/ AXI, Audio Controller, Coprocessor, CPU, Ethernet, Microcontroller, Multiprocessor / DSP, PowerPC, Processor Core Dependent, Processor Cores
View Details

AX45MP

The AX45MP is engineered as a high-performance processor that supports multicore architecture and advanced data processing capabilities, particularly suitable for applications requiring extensive computational efficiency. Powered by the AndesCore processor line, it capitalizes on a multicore symmetric multiprocessing framework, integrating up to eight cores with robust L2 cache management. The AX45MP incorporates advanced features such as vector processing capabilities and support for MemBoost technology to maximize data throughput. It caters to high-demand applications including machine learning, digital signal processing, and complex algorithmic computations, ensuring data coherence and efficient power usage.

Andes Technology
2D / 3D, ADPCM, CPU, IoT Processor, Processor Core Independent, Processor Cores, Vision Processor
View Details

Speedster7t FPGAs

The Speedster7t FPGA family is crafted for high-bandwidth tasks, tackling the usual restrictions seen in conventional FPGAs. Manufactured using the TSMC 7nm FinFET process, these FPGAs are equipped with a pioneering 2D network-on-chip architecture and a series of machine learning processors for optimal high-bandwidth performance and AI/ML workloads. They integrate interfaces for high-paced GDDR6 memory, 400G Ethernet, and PCI Express Gen5 ports. This 2D network-on-chip connects various interfaces to upward of 80 access points in the FPGA fabric, enabling ASIC-like performance, yet retaining complete programmability. The product encourages users to start with the VectorPath accelerator card which houses the Speedster7t FPGA. This family offers robust tools for applications such as 5G infrastructure, computational storage, and test and measurement.

Achronix
TSMC
7nm
Processor Cores
View Details

Veyron V2 CPU

Ventana's Veyron V2 CPU represents the pinnacle of high-performance AI and data center-class RISC-V processors. Engineered to deliver world-class performance, it supports extensive data center workloads, offering superior computational power and efficiency. The V2 model is particularly focused on accelerating AI and ML tasks, ensuring compute-intensive applications run seamlessly. Its design makes it an ideal choice for hyperscale, cloud, and edge computing solutions where performance is non-negotiable. This CPU is instrumental for companies aiming to scale with the latest in server-class technology.

Ventana Micro Systems
AI Processor, CPU, Processor Core Dependent, Processor Cores
View Details

A25

The A25 processor model is a versatile CPU suitable for a variety of embedded applications. With its 5-stage pipeline and 32/64-bit architecture, it delivers high performance even with a low gate count, which translates to efficiency in power-sensitive environments. The A25 is equipped with Andes Custom Extensions that enable tailored instruction sets for specific application accelerations. Supporting robust high-frequency operations, this model shines in its ability to manage data prefetching and cache coherence in multicore setups, making it adept at handling complex processing tasks within constrained spaces.

Andes Technology
CPU, IoT Processor, Microcontroller, Processor Core Dependent, Processor Cores, Standard cell
View Details

Jotunn8 AI Accelerator

The Jotunn8 represents a leap in AI inference technology, delivering unmatched efficiency for modern data centers. This chip is engineered to manage AI model deployments with lightning-fast execution, at minimal cost and high scalability. It ensures optimal performance by balancing high throughput and low latency, while being extremely power-efficient, which significantly lowers operational costs and supports sustainable infrastructures. The Jotunn8 is designed to unlock the full capacity of AI investments by providing a high-performance platform that enhances the delivery and impact of AI models across applications. It is particularly suitable for real-time applications such as chatbots, fraud detection, and search engines, where ultra-low latency and very high throughput are critical. Power efficiency is a major emphasis of the Jotunn8, optimizing performance per watt to control energy as a substantial operational expense. Its architecture allows for flexible memory allocation ensuring seamless adaptability across varied applications, providing a robust foundation for scalable AI operations. This solution is aimed at enhancing business competitiveness by supporting large-scale model deployment and infrastructure optimization.

VSORA
AI Processor, DSP Core, Interleaver/Deinterleaver, Multiprocessor / DSP, Processor Core Dependent, Processor Core Independent, Vision Processor
View Details

Chimera GPNPU

The Chimera GPNPU from Quadric is designed as a general-purpose neural processing unit intended to meet a broad range of demands in machine learning inference applications. It is engineered to perform both matrix and vector operations along with scalar code within a single execution pipeline, which offers significant flexibility and efficiency across various computational tasks. This product achieves up to 864 Tera Operations per Second (TOPs), making it suitable for intensive applications including automotive safety systems. Notably, the GPNPU simplifies system-on-chip (SoC) hardware integration by consolidating hardware functions into one processor core. This unification reduces complexity in system design tasks, enhances memory usage profiling, and optimizes power consumption when compared to systems involving multiple heterogeneous cores such as NPUs and DSPs. Additionally, its single-core setup enables developers to efficiently compile and execute diverse workloads, improving performance tuning and reducing development time. The architecture of the Chimera GPNPU supports state-of-the-art models with its Forward Programming Interface that facilitates easy adaptation to changes, allowing support for new network models and neural network operators. It’s an ideal solution for products requiring a mix of traditional digital signal processing and AI inference like radar and lidar signal processing, showcasing a rare blend of programming simplicity and long-term flexibility. This capability future-proofs devices, expanding their lifespan significantly in a rapidly evolving tech landscape.

Quadric
14 Categories
View Details

SCR9 Processor Core

Designed for entry-level server-class applications, the SCR9 is a 64-bit RISC-V processor core that comes equipped with cutting-edge features, such as an out-of-order superscalar pipeline, making it apt for processing-intensive environments. It supports both single and double-precision floating-point operations adhering to IEEE standards, which ensure precise computation results. This processor core is tailored for high-performance computing needs, with a focus on AI and ML, as well as conventional data processing tasks. It integrates an advanced interrupt system featuring APLIC configurations, enabling responsive operations even under heavy workloads. SCR9 supports up to 16 cores in a multi-cluster arrangement, each utilizing coherent multi-level caches to maintain rapid data processing and management. The comprehensive development package for SCR9 includes ready-to-deploy toolchains and simulators that expedite software development, particularly within Linux environments. The core is well-suited for deployment in entry-level server markets and data-intensive applications, with robust support for virtualization and heterogeneous architectures.

Syntacore
AI Processor, Coprocessor, CPU, Microcontroller, Processor Core Dependent, Processor Cores
View Details

KL520 AI SoC

The KL520 was Kneron's first foray into AI SoCs, characterized by its small size and energy efficiency. This chip integrates a dual ARM Cortex M4 CPU architecture, which can function both as a host processor and as a supportive AI co-processor for diverse edge devices. Ideal for smart devices such as door locks and cameras, it is compatible with various 3D sensor technologies, offering a balance of compact design and high performance. As a result, this SoC has been adopted by multiple products in the smart home and security sectors.

Kneron
TSMC
28nm
AI Processor, Camera Interface, Clock Generator, CPU, GPU, IoT Processor, MPEG 4, Receiver/Transmitter, Vision Processor
View Details

RV12 RISC-V Processor

The RV12 RISC-V Processor from Roa Logic is a highly versatile CPU designed for embedded applications. It complies with the RV32I and RV64I specifications of the RISC-V instruction set, supporting single-core configurations. The RV12 processor is renowned for its configurability, allowing it to be tailored to specific application requirements. It implements a Harvard architecture, which enables concurrent access to both instruction and data memory, optimizing performance and efficiency. Roa Logic's RV12 processor is part of their broader portfolio of 32/64-bit CPU solutions that leverage the open-source RISC-V instruction set. This architecture is favored for its simplicity and scalability, making it ideal for various embedded systems. The processor is equipped with an optimizing feature set that enhances its processing capabilities, ensuring it meets the rigorous demands of modern applications. Incorporating the RV12 processor into projects is streamlined thanks to its comprehensive support documentation and available test benches. These resources facilitate smooth integration into larger systems, providing developers with a reliable foundation for building advanced embedded systems. Its design is a testament to Roa Logic's commitment to delivering high-performance, adaptable IP solutions to the semiconductor industry.

Roa Logic BV
All Foundries
All Process Nodes
CPU, Cryptography Software Library, IoT Processor, Microcontroller, Processor Cores
View Details

Mixed-Signal CODEC

The Mixed-Signal CODEC offered by Archband Labs integrates advanced analog and digital audio processing to deliver superior sound quality. Designed for a variety of applications such as portable audio devices, automotive systems, and entertainment systems, this CODEC provides efficiency and high performance. With cutting-edge technologies, it handles complex signal conversions with minimal power consumption. This CODEC supports numerous interface standards, making it a versatile component in numerous audio architectures. It's engineered to offer precise sound reproduction and maintains audio fidelity across all use cases. The integrated components within the CODEC streamline design processes and reduce the complexity of audio system implementations. Furthermore, the Mixed-Signal CODEC incorporates features that support high-resolution audio, ensuring compatibility with high-definition sound systems. It's an ideal choice for engineers looking for a reliable and comprehensive audio processing solution.

Archband Labs
ADPCM, Audio Controller, Audio Interfaces, Audio Processor, Coder/Decoder, DMA Controller, GPU, Peripheral Controller, Receiver/Transmitter, Timer/Watchdog, USB
View Details

KL630 AI SoC

The KL630 chip stands out with its pioneering NPU architecture, making it the industry's first to support Int4 precision alongside transformer networks. This unique capability enables it to achieve exceptional computational efficiency and low energy consumption, suitable for a wide variety of applications. The chip incorporates an ARM Cortex A5 CPU, providing robust support for all major AI frameworks and delivering superior ISP capabilities for handling low light conditions and HDR applications, making it ideal for security, automotive, and smart city uses.

Kneron
TSMC
28nm
ADPCM, AI Processor, Camera Interface, CPU, GPU, Input/Output Controller, USB, VGA, Vision Processor
View Details

NMP-350

The NMP-350 is a cutting-edge endpoint accelerator designed to optimize power usage and reduce costs. It is ideal for markets like automotive, AIoT/sensors, and smart appliances. Its applications span from driver authentication and predictive maintenance to health monitoring. With a capacity of up to 1 TOPS and 1 MB of local memory, it incorporates a RISC-V/Arm Cortex-M 32-bit CPU and supports three AXI4 interfaces. This makes the NMP-350 a versatile component for various industrial applications, ensuring efficient performance and integration. Developed as a low-power solution, the NMP-350 is pivotal for applications requiring efficient processing power without inflating energy consumption. It is crucial for mobile and battery-operated devices where every watt conserved adds to the operational longevity of the product. This product aligns with modern demands for eco-friendly and cost-effective technologies, supporting enhanced performance in compact electronic devices. Technical specifications further define its role in the industry, exemplifying how it brings robust and scalable solutions to its users. Its adaptability across different applications, coupled with its cost-efficiency, makes it an indispensable tool for developers working on next-gen AI solutions. The NMP-350 is instrumental for developers looking to seamlessly incorporate AI capabilities into their designs without compromising on economy or efficiency.

AiM Future
AI Processor, CPU, IoT Processor, Microcontroller, Multiprocessor / DSP, Processor Core Dependent
View Details

Polar ID Biometric Security System

The Polar ID Biometric Security System by Metalenz revolutionizes smartphone biometric security with its advanced imaging capabilities that capture the full polarization state of light. This system detects unique facial polarization signatures, enabling high-precision face authentication that even sophisticated 3D masks cannot deceive. Unlike traditional systems requiring multiple optical modules, Polar ID achieves secure recognition with a single image, ideal for secure digital payments and more. Operating efficiently across various lighting conditions, from bright daylight to complete darkness, Polar ID ensures robust security without compromising user convenience. By leveraging meta-optic technology, it offers a compact, cost-effective alternative to structured light solutions, suitable for widespread deployment across millions of mobile devices.

Metalenz Inc.
13 Categories
View Details

EW6181 GPS and GNSS Silicon

EW6181 is an IP solution crafted for applications demanding extensive integration levels, offering flexibility by being licensable in various forms such as RTL, gate-level netlist, or GDS. Its design methodology focuses on delivering the lowest possible power consumption within the smallest footprint. The EW6181 effectively extends battery life for tags and modules due to its efficient component count and optimized Bill of Materials (BoM). Additionally, it is backed by robust firmware ensuring highly accurate and reliable location tracking while offering support and upgrades. The IP is particularly suitable for challenging application environments where precision and power efficiency are paramount, making it adaptable across different technology nodes given the availability of its RF frontend.

etherWhere Corporation
TSMC
7nm
3GPP-5G, AI Processor, Bluetooth, CAN, CAN XL, CAN-FD, Fibre Channel, FlexRay, GPS, Optical/Telecom, Photonics, RF Modules, USB, W-CDMA
View Details

eSi-3250

The eSi-3250 stands as a high-performance 32-bit RISC IP processor, optimized for implementations within ASIC or FPGA environments that demand rigorous caching strategies due to slower internal or external memories. Noteworthy for its adaptable instruction and data cache capabilities, this core is tailored to excel in scenarios where the CPU core to bus clock ratio exceeds singularity. The eSi-3250 integrates dual separate caches for both data and instructions, enabling configuration in various associativity forms optimizing for elevated performance while maintaining power efficiency. It includes a specialized optional memory management unit, vital for memory protection and the deployment of virtual memory, accommodating sophisticated system requirements. Incorporating an expansive instruction set, the processor is equipped for intensive computational tasks with a multitude of optional additional instruction types and addressing modes. Additional requisite supporting hardware includes incorporated debug features conducive to efficient system analysis and troubleshooting, solidifying the eSi-3250's position as a favored choice for high-throughput, low-power applications across a spectrum of technology processes.

eSi-RISC
All Foundries
16nm, 130nm, 180nm
CPU, Microcontroller, Multiprocessor / DSP, Processor Cores
View Details

AndesCore Processors

AndesCore Processors offer a robust lineup of high-performance CPUs tailored for diverse market segments. Employing the AndeStar V5 instruction set architecture, these cores uniformly support the RISC-V technology. The processor family is classified into different series, including the Compact, 25-Series, 27-Series, 40-Series, and 60-Series, each featuring unique architectural advances. For instance, the Compact Series specializes in delivering compact, power-efficient processing, while the 60-Series is optimized for high-performance out-of-order execution. Additionally, AndesCore processors extend customization through Andes Custom Extension, which allows users to define specific instructions to accelerate application-specific tasks, offering a significant edge in design flexibility and processing efficiency.

Andes Technology
CPU, FlexRay, Processor Core Dependent, Processor Core Independent, Processor Cores, Security Processor
View Details

NMP-550

The NMP-550 is tailored for enhanced performance efficiency, serving sectors like automotive, mobile, AR/VR, drones, and robotics. It supports applications such as driver monitoring, image/video analytics, and security surveillance. With a capacity of up to 6 TOPS and 6 MB local memory, this accelerator leverages either a RISC-V or Arm Cortex-M/A 32-bit CPU. Its three AXI4 interface support ensures robust interconnections and data flow. This performance boost makes the NMP-550 exceptionally suited for devices requiring high-frequency AI computations. Typical use cases include industrial surveillance and smart robotics, where precise and fast data analysis is critical. The NMP-550 offers a blend of high computational power and energy efficiency, facilitating complex AI tasks like video super-resolution and fleet management. Its architecture supports modern digital ecosystems, paving the way for new digital experiences through reliable and efficient data processing capabilities. By addressing the needs of modern AI workloads, the NMP-550 stands as a significant upgrade for those needing robust processing power in compact form factors.

AiM Future
AI Processor, CPU, IoT Processor, Microcontroller, Multiprocessor / DSP, Processor Core Dependent
View Details

ORC3990 – DMSS LEO Satellite Endpoint System On Chip (SoC)

The ORC3990 SoC is a state-of-the-art solution designed for satellite IoT applications within Totum's DMSS™ network. This low-power sensor-to-satellite system integrates an RF transceiver, ARM CPUs, memories, and PA to offer seamless IoT connectivity via LEO satellite networks. It boasts an optimized link budget for effective indoor signal coverage, eliminating the need for additional GNSS components. This compact SoC supports industrial temperature ranges and is engineered for a 10+ year battery life using advanced power management.

Orca Systems Inc.
TSMC
22nm
3GPP-5G, Bluetooth, Processor Core Independent, RF Modules, USB, Wireless Processor
View Details

eSi-1600

The eSi-1600 is a compact, low-power, and cost-effective processor core specifically engineered for integration into both ASIC and FPGA designs. It delivers performance comparable to costlier 32-bit processors while maintaining an affordability akin to 8-bit options, making it suited for control tasks within mature mixed-signal environments requiring less than 64kB memory. Despite its 16-bit design, it achieves notable power savings by executing applications in fewer clock cycles, reducing the need for high-frequency operations and enabling faster power-down states. Boasting a versatile instruction set, the eSi-1600 encompasses both general-purpose and optional custom functions, enhancing flexibility for specialized computations. Innovative architectural features like a 5-stage pipeline facilitate high clock speeds even in older technologies. This processor supports intricate arithmetic operations including multiply-accumulate and division, along with diverse bit manipulation instructions beneficial for efficient data handling and algorithm execution. Moreover, its capacity to intermingle 16 and 32-bit instructions increases code density, optimizing both performance and power efficiency. The eSi-1600 supports various operating modes and privileges via an optional memory protection unit, providing secure execution for multiple applications. Comprehensive debugging support assists in effective program diagnosis and optimization. This processor core is thoroughly validated across technological processes and included as a Verilog RTL IP core, illustrating its adaptability, reliability, and readiness for broad deployment.

eSi-RISC
All Foundries
16nm, 130nm, 180nm
CPU, Microcontroller, Processor Cores
View Details

3D Imaging Chip

Altek Corporation's 3D Imaging Chip is designed to enhance three-dimensional sensing capabilities across various applications. By incorporating advanced image processing algorithms, it delivers superior depth perception and spatial awareness, making it well-suited for industries that require high precision and accuracy. This chip is particularly beneficial in robotics, automation, and surveillance, where accurate distance measurement and object tracking are critical.<br/><br/>The chip's innovative design allows for seamless integration with existing systems, optimizing performance without compromising on speed or quality. Its ability to deliver real-time processing enables dynamic interactions, providing improved user experiences in augmented and virtual reality environments. Moreover, the chip's energy-efficient construction ensures prolonged operation without excessive power consumption, making it an ideal choice for portable devices.<br/><br/>Altek's commitment to pushing the boundaries of imaging technology is evident in this 3D Imaging Chip. It combines hardware resilience with software intricacy, creating a robust solution that supports a multitude of applications, from industrial automation to healthcare equipment, enhancing operational efficiency through sophisticated visual data analysis.

Altek Corporation
Samsung, TSMC
28nm, 55nm
A/D Converter, Coprocessor, Graphics & Video Modules, Oversampling Modulator, Photonics, Sensor
View Details

Dynamic Neural Accelerator II Architecture

The Dynamic Neural Accelerator II (DNA-II) is a highly efficient and versatile IP specifically engineered for optimizing AI workloads at the edge. Its unique architecture allows runtime reconfiguration of interconnects among computing units, which facilitates improved parallel processing and efficiency. DNA-II supports a broad array of networks, including convolutional and transformer networks, making it an ideal choice for numerous edge applications. Its design emphasizes low power consumption while maintaining high computational performance. By utilizing a dynamic data path architecture, DNA-II sets a new benchmark for IP cores aimed at enhancing AI processing capabilities.

EdgeCortix Inc.
AI Processor, Audio Processor, CPU, Cryptography Cores, Multiprocessor / DSP, Processor Core Dependent, Processor Core Independent, Processor Cores, Vision Processor
View Details

xcore.ai

xcore.ai is a powerful platform tailored for the intelligent IoT market, offering unmatched flexibility and performance. It boasts a unique multi-threaded micro-architecture that provides low-latency and deterministic performance, perfect for smart applications. Each xcore.ai contains 16 logical cores distributed across two multi-threaded processor tiles, each equipped with 512kB of SRAM and capable of both integer and floating-point operations. The integrated interprocessor communication allows high-speed data exchange, ensuring ultimate scalability across multiple xcore.ai SoCs within a unified development environment.

XMOS Semiconductor
20 Categories
View Details

RISC-V Core-hub Generators

The RISC-V Core-hub Generators from InCore are tailored for developers who need advanced control over their core architectures. This innovative tool enables users to configure core-hubs precisely at the instruction set and microarchitecture levels, allowing for optimized design and functionality. The platform supports diverse industry applications by facilitating the seamless creation of scalable and customizable RISC-V cores. With the RISC-V Core-hub Generators, InCore empowers users to craft their own processor solutions from the ground up. This flexibility is pivotal for businesses looking to capitalize on the burgeoning RISC-V ecosystem, providing a pathway to innovation with reduced risk and cost. Incorporating feedback from leading industry partners, these generators are designed to lower verification costs while accelerating time-to-market for new designs. Users benefit from InCore's robust support infrastructure and a commitment to simplifying complex chip design processes. This product is particularly beneficial for organizations aiming to integrate RISC-V technology efficiently into their existing systems, ensuring compatibility and enhancing functionality through intelligent automation and state-of-the-art tools.

InCore Semiconductors
AI Processor, CPU, IoT Processor, Multiprocessor / DSP, Processor Core Dependent, Processor Core Independent, Processor Cores
View Details

NeuroVoice AI Chip for Voice Processing

The NeuroVoice chip by Polyn Technology is engineered to improve voice processing capabilities for a variety of consumer electronic devices, particularly focusing on addressing challenges associated with traditional digital voice solutions. Built on the NASP platform, this AI chip is tailored to operate efficiently in noisy environments without relying on cloud-based processing, thus ensuring privacy and reducing latency. A key feature of NeuroVoice is its ultra-low power consumption, which allows continuous device operation even in power-sensitive applications like wearables and smart home devices. It includes abilities such as always-on voice activity detection, smart voice control, speaker recognition, and real-time voice extraction. This amalgamation of capabilities makes the NeuroVoice a versatile component in enhancing voice-controlled systems' efficacy. NeuroVoice stands out by seamlessly integrating into devices, offering users the advantage of precise voice recognition and activity detection with minimal energy demands. It further differentiates itself by delivering clear communication even amidst irregular background noises, setting a new benchmark for on-device audio processing with its advanced neural network-driven design.

Polyn Technology Ltd.
Audio Controller, Audio Interfaces, Audio Processor, Bluetooth, Multiprocessor / DSP, Peripheral Controller, USB
View Details

SCR1 Microcontroller Core

SCR1 is an open-source and silicon-proven microcontroller core, tailored for deeply embedded applications. This 32-bit RISC-V core supports the standard ISA with optional extensions for multiplication, division, and compressed instructions. The design comprises a simple in-order 4-stage pipeline, providing efficient interrupt handling with an IPIC unit. It connects seamlessly with various interfaces, including AXI4, AHB-Lite, and JTAG, enhancing its adaptability across different systems. The SCR1 core boasts a Tightly-Coupled Memory (TCM) subsystem supporting up to 64KB. It features up to 16 interrupt lines and a range of performance monitoring tools making it ideal for IoT, control systems, and smart card applications. Pre-configured software development tools, including IDEs like Eclipse and Visual Studio Code plugins, complement the core, enabling developers to quickly deploy applications tailored to SCR1’s architecture. Additionally, SCR1 comes packaged with a rich suite of documentation and pre-configured FPGA-based SDK, ensuring a smooth transition from development to implementation. Its GPL-compliant open-source license ensures flexibility for commercial and educational use, making it a versatile choice for a wide range of projects.

Syntacore
Building Blocks, CPU, Microcontroller, Processor Cores
View Details

Y180

The Y180 is a compact CPU-only design, serving as a clone of the Zilog Z180 CPU, and involves approximately 8K gates. It caters to applications that require compatibility with the Zilog architecture and prefer a minimalistic yet effective microprocessor implementation.

Systemyde International Corp.
CPU, IoT Processor, Microcontroller, Processor Cores
View Details

Nerve IIoT Platform

The Nerve IIoT Platform is a comprehensive solution for machine builders, offering cloud-managed edge computing capabilities. This innovative platform delivers high levels of openness, security, flexibility, and real-time data handling, enabling businesses to embark on their digital transformation journeys. Nerve's architecture allows for seamless integration with a variety of hardware devices, from basic gateways to advanced IPCs, ensuring scalability and operational efficiency across different industrial settings. Nerve facilitates the collection, processing, and analysis of machine data in real-time, which is crucial for optimizing production and enhancing operational efficiency. By providing robust remote management functionalities, businesses can efficiently handle device operations and application deployments from any location. This capacity to manage data flows between the factory floor and the cloud transitions enterprises into a new era of digital management, thereby minimizing costs and maximizing productivity. The platform also supports multiple cloud environments, empowering businesses to select their preferred cloud service while maintaining operational continuity. With its secure, IEC 62443-4-1 certified infrastructure, Nerve ensures that both data and applications remain protected from cyber threats. Its integration of open technologies, such as Docker and virtual machines, further facilitates rapid implementation and prototyping, enabling businesses to adapt swiftly to ever-changing demands.

TTTech Industrial Automation AG
18 Categories
View Details

eSi-3200

The eSi-3200 represents the mid-tier solution in the eSi-RISC family, bringing a high degree of versatility and performance to embedded control systems. This 32-bit processor is proficiently designed for scenarios demanding enhanced computational capabilities or extended address spaces without compromise on power efficiency, suitably fitting applications with on-chip memory implementations. Engineered without a cache, the eSi-3200 facilitates deterministic performance essential for real-time applications. It leverages a modified-Harvard architecture allowing concurrent instruction and data fetches, maximizing throughput. With a 5-stage pipeline, the processor achieves high clock frequencies suitable for time-critical operations enhancing responsiveness and efficiency. The comprehensive instruction set encompasses core arithmetic functions, including advanced IEEE-754 single-precision floating-point operations, which cater to data-intensive and mathematically challenging applications. Designed with optimal flexibility, it can accommodate optional custom instructions tailored to specific processing needs, offering a well-balanced solution for versatile embedded applications. Delivered as a Verilog RTL IP core, it ensures platform compatibility, simplifying integration into diverse silicon nodes.

eSi-RISC
All Foundries
16nm, 130nm, 180nm
CPU, Microcontroller, Multiprocessor / DSP, Processor Cores
View Details

KL530 AI SoC

The KL530 is built with an advanced heterogeneous AI chip architecture, designed to enhance computing efficiency while reducing power usage. Notably, it is recognized as the first in the market to support INT4 precision and transformers for commercial applications. The chip, featuring a low-power ARM Cortex M4 CPU, delivers impressive performance with 1 TOPS@INT 4 computing power, providing up to 70% higher processing efficiency compared to INT8 architectures. Its integrated smart ISP optimizes image quality, supporting AI models like CNN and RNN, suitable for IoT and AIoT ecosystems.

Kneron
TSMC
28nm
AI Processor, Camera Interface, Clock Generator, CPU, CSC, GPU, Peripheral Controller, Vision Processor
View Details

C100 IoT Control and Interconnection Chip

The C100 is designed to enhance IoT connectivity and performance with its highly integrated architecture. Built around a robust 32-bit RISC-V CPU running up to 1.5GHz, this chip offers powerful processing capabilities ideal for IoT applications. Its architecture includes embedded RAM and ROM memory, facilitating efficient data handling and computations. A prime feature of the C100 is its integration of Wi-Fi components and various transmission interfaces, enhancing its utility in diverse IoT environments. The inclusion of an ADC, LDO, and a temperature sensor supports myriad applications, ensuring devices can operate in a wide range of conditions and applications. The chip's low power consumption is a critical factor in this design, enabling longer operation duration in connected devices and reducing maintenance frequency due to less charging or battery replacement needs. This makes the C100 chip suitable for secure smart home systems, interactive toys, and healthcare devices.

Shenzhen Chipchain Technologies Co., Ltd.
TSMC
14nm, 16nm, 28nm
19 Categories
View Details

RISC-V CPU IP N Class

The RISC-V CPU IP N Class is designed to cater to the needs of 32-bit microcontroller units (MCUs) and AIoT (Artificial Intelligence of Things) applications. It is engineered to provide a balance of performance and power efficiency, making it suitable for a range of general computing needs. With its adaptable architecture, the N Class processor allows for customization, enabling developers to configure the core to meet specific application requirements while minimizing unnecessary overhead. Incorporating the RISC-V open standard, the N Class delivers robust functional features, supporting both security and functional safety needs. This processor core is ideal for applications that require reliable performance combined with low energy consumption. Developers benefit from an extensive set of resources and tools available in the RISC-V ecosystem to facilitate the integration and deployment of this processor across diverse use cases. The RISC-V CPU IP N Class demonstrates excellent scalability, allowing for configuration that aligns with the specific demands of IoT devices and embedded systems. Whether for implementing sophisticated sensor data processing or managing communication protocols within a smart device, the N Class provides the foundation necessary for developing innovative and efficient solutions.

Nuclei System Technology
Building Blocks, CPU, IoT Processor, Microcontroller, Processor Core Dependent, Processor Cores
View Details

Wormhole

Wormhole is a high-efficiency processor designed to handle intensive AI processing tasks. Featuring an advanced architecture, it significantly accelerates AI workload execution, making it a key component for developers looking to optimize their AI applications. Wormhole supports an expansive range of AI models and frameworks, enabling seamless adaptation and deployment across various platforms. The processor’s architecture is characterized by high core counts and integrated system interfaces that facilitate rapid data movement and processing. This ensures that Wormhole can handle both single and multi-user environments effectively, especially in scenarios that demand extensive computational resources. The seamless connectivity supports vast memory pooling and distributed processing, enhancing AI application performance and scalability. Wormhole’s full integration with Tenstorrent’s open-source ecosystem further amplifies its utility, providing developers with the tools to fully leverage the processor’s capabilities. This integration facilitates optimized ML workflows and supports continuous enhancement through community contributions, making Wormhole a forward-thinking solution for cutting-edge AI development.

Tenstorrent
TSMC
16nm, 28nm
AI Processor, CPU, CXL, D2D, Interlaken, IoT Processor, Multiprocessor / DSP, Network on Chip, Processor Core Dependent, Processor Core Independent, Processor Cores
View Details

2D FFT

The 2D FFT core is engineered to deliver fast processing for two-dimensional FFT computations, essential in image and video processing applications. By utilizing both internal and external memory effectively, this core is capable of handling large data sets typical in medical imaging or aerial surveillance systems. This core leverages Dillon Engineering’s ParaCore Architect utility to maximize flexibility and efficiency. It takes advantage of a two-engine design, where data can flow between stages without interruption, ensuring high throughput and minimal memory delays. Such a robust setup is vital for applications where swift processing of extensive data grids is crucial. The architecture is structured to provide consistent, high-quality transform computations that are essential in applications where accuracy and speed are non-negotiable. The 2D FFT core, with its advanced design parameters, supports the varied demands of modern imaging technology, providing a reliable tool for developers and engineers working within these sectors.

Dillon Engineering, Inc.
GLOBALFOUNDRIES, TSMC
40nm
2D / 3D, GPU, Image Conversion, Multiprocessor / DSP, PLL, Processor Core Independent, Vision Processor, Wireless Processor
View Details

aiWare

aiWare represents aiMotive's advanced hardware intellectual property core for automotive neural network acceleration, pushing boundaries in efficiency and scalability. This neural processing unit (NPU) is tailored to meet the rigorous demands of automotive AI inference, providing robust support for various AI workloads, including CNNs, LSTMs, and RNNs. By achieving up to 256 Effective TOPS and remarkable scalability, aiWare caters to a wide array of applications, from edge processors in sensors to centralized high-performance modules.\n\nThe design of aiWare is particularly focused on enhancing efficiency in neural network operations, achieving up to 98% efficiency across diverse automotive applications. It features an innovative dataflow architecture, ensuring minimal external memory bandwidth usage while maximizing in-chip data processing. This reduces power consumption and enhances performance, making it highly adaptable for deployment in resource-critical environments.\n\nAdditionally, aiWare is embedded with comprehensive tools like the aiWare Studio SDK, which streamlines the neural network optimization and iteration process without requiring extensive NPU code adjustments. This ensures that aiWare can deliver optimal performance while minimizing development timelines by allowing for early performance estimations even before target hardware testing. Its integration into ASIL-B or higher certified solutions underscores aiWare's capability to power the most demanding safety applications in the automotive domain.

aiMotive
AI Processor, Building Blocks, CPU, Cryptography Cores, Platform Security, Processor Core Dependent, Processor Core Independent, Security Protocol Accelerators, Vision Processor
View Details

AndeShape Platforms

The AndeShape Platforms are designed to streamline system development by providing a diverse suite of IP solutions for SoC architecture. These platforms encompass a variety of product categories, including the AE210P for microcontroller applications, AE300 and AE350 AXI fabric packages for scalable SoCs, and AE250 AHB platform IP. These solutions facilitate efficient system integration with Andes processors. Furthermore, AndeShape offers a sophisticated range of development platforms and debugging tools, such as ADP-XC7K160/410, which reinforce the system design and verification processes, providing a comprehensive environment for the innovative realization of IoT and other embedded applications.

Andes Technology
Embedded Memories, Microcontroller, Processor Core Dependent, Processor Core Independent, Standard cell
View Details

SAKURA-II AI Accelerator

SAKURA-II is an advanced AI accelerator recognized for its efficiency and adaptability. It is specifically designed for edge applications that require rapid, real-time AI inference with minimal delay. Capable of processing expansive generative AI models such as Llama 2 and Stable Diffusion within an 8W power envelope, this accelerator supports a wide range of applications from vision to language processing. Its enhanced memory bandwidth and substantial DRAM capacity ensure its suitability for handling complex AI workloads, including large-scale language and vision models. The SAKURA-II platform also features robust power management, allowing it to achieve high efficiency during operations.

EdgeCortix Inc.
AI Processor, CPU, Multiprocessor / DSP, Processor Core Dependent, Processor Core Independent, Vision Processor
View Details

SCR7 Application Core

The SCR7 is a 64-bit RISC-V application core crafted to meet high-performance demands of applications requiring powerful data processing. Featuring a sophisticated dual-issue pipeline with out-of-order execution, it enhances computational efficiency across varied tasks. The core is equipped with a robust floating-point unit and supports extensive RISC-V ISA extensions for advanced computing capabilities. SCR7's memory system includes L1 to L3 caches, with options for expansive up to 16MB L3 caching, ensuring data availability and integrity in demanding environments. Its multicore architecture supports up to eight cores, facilitating intensive computational tasks across industries such as AI and machine learning. Ideal for high-performance computing and big data applications, the SCR7 leverages its advanced interrupt systems and intelligent memory management for seamless operation. Comprehensive development resources, from simulators to SDKs, augment its integration across Linux-based systems, accelerating project development timelines.

Syntacore
AI Processor, CPU, IoT Processor, Microcontroller, Processor Cores
View Details

GenAI v1-Q

The GenAI v1-Q from RaiderChip brings forth a specialized focus on quantized AI operations, reducing memory requirements significantly while maintaining impressive precision and speed. This innovative accelerator is engineered to execute large language models in real-time, utilizing advanced quantization techniques such as Q4_K and Q5_K, thereby enhancing AI inference efficiency especially in memory-constrained environments. By offering a 276% boost in processing speed alongside a 75% reduction in memory footprint, GenAI v1-Q empowers developers to integrate advanced AI capabilities into smaller, less powerful devices without sacrificing operational quality. This makes it particularly advantageous for applications demanding swift response times and low latency, including real-time translation, autonomous navigation, and responsive customer interactions. The GenAI v1-Q diverges from conventional AI solutions by functioning independently, free from external network or cloud auxiliaries. Its design harmonizes superior computational performance with scalability, allowing seamless adaptation across variegated hardware platforms including FPGAs and ASIC implementations. This flexibility is crucial for tailoring performance parameters like model scale, inference velocity, and power consumption to meet exacting user specifications effectively. RaiderChip's GenAI v1-Q addresses crucial AI industry needs with its ability to manage multiple transformer-based models and confidential data securely on-premises. This opens doors for its application in sensitive areas such as defense, healthcare, and financial services, where confidentiality and rapid processing are paramount. With GenAI v1-Q, RaiderChip underscores its commitment to advancing AI solutions that are both environmentally sustainable and economically viable.

RaiderChip
TSMC
65nm
AI Processor, AMBA AHB / APB/ AXI, Audio Controller, Coprocessor, CPU, Ethernet, Microcontroller, Multiprocessor / DSP, PowerPC, Processor Core Dependent, Processor Cores
View Details
Load more
Sign up to Silicon Hub to buy and sell semiconductor IP

Sign Up for Silicon Hub

Join the world's most advanced semiconductor IP marketplace!

It's free, and you'll get all the tools you need to discover IP, meet vendors and manage your IP workflow!

Sign up to Silicon Hub to buy and sell semiconductor IP

Welcome to Silicon Hub

Join the world's most advanced AI-powered semiconductor IP marketplace!

It's free, and you'll get all the tools you need to advertise and discover semiconductor IP, keep up-to-date with the latest semiconductor news and more!

Plus we'll send you our free weekly report on the semiconductor industry and the latest IP launches!

Switch to a Silicon Hub buyer account to buy semiconductor IP

Switch to a Buyer Account

To evaluate IP you need to be logged into a buyer profile. Select a profile below, or create a new buyer profile for your company.

Add new company

Switch to a Silicon Hub buyer account to buy semiconductor IP

Create a Buyer Account

To evaluate IP you need to be logged into a buyer profile. It's free to create a buyer profile for your company.

Chatting with Volt