All IPs > Memory Controller & PHY
The "Memory Controller & PHY" category within our semiconductor IP catalog encompasses a wide array of specialized IP cores designed to manage data flow to and from memory subsystems across different types of semiconductor technologies. Memory controllers and PHYs play a crucial role in interfacing with various memory types, ensuring efficient data transfer, and optimizing performance for diverse applications. Whether dealing with high-performance computing or consumer electronics, these IPs are fundamental to developing competent and reliable semiconductor solutions.
Memory controllers are integral components responsible for managing the communication between the system processor and memory. They ensure high-speed data access and are critical in determining a system's data throughput and latency. Within this category, you will encounter IP solutions for DDR (Double Data Rate) memory types, offering compatibility with the latest DDR3, DDR4, and upcoming DDR5 standards. Among other offerings, you'll also find HBM (High Bandwidth Memory) solutions for applications requiring ultra-high bandwidth and reduced power consumption, such as gaming consoles and GPUs.
PHYs, or physical layer interfaces, complement memory controllers by handling the electrical signaling and protocol adherence necessary for data transmission over physical mediums. Together with controllers, they form the backbone that bridges the communications between processors and different memory modules. Our catalog includes a variety of PHY solutions for diverse standards like eMMC, ONFI, and NVMe, facilitating efficient and secure data transactions.
The "Memory Controller & PHY" category caters to a broad range of products and applications. From mobile DDR and SDR controllers used in portable devices like smartphones to high-speed NAND flash controllers intended for storage solutions, the diversity of this category reflects the engineering rigor and adaptability required in modern semiconductor design. By browsing through our offerings, semiconductor developers can pinpoint the exact IP needed to enhance their memory management strategies and bring high-performance, low-latency solutions to market effectively.
Overview: The DDR5 RCD Controller is a registering clock driver utilized in DDR5 RDIMMs and LRDIMMs. It buffers the Command/Address (CA) bus, chip selects, and clock signals between the host controller and DRAMs. Additionally, it establishes a BCOM bus to control data buffers in LRDIMMs. Key Features:  Compliance with JEDEC's JESD82-511  Maximum SCL Operating speed of 12.5MHz in I3C mode  DDR5 server speeds up to 4800MT/s  Dual-channel configuration with 32-bit data width per channel  Support for power-saving mechanisms  Rank 0 & rank 1 DIMM configurations  Loopback and pass-through modes  BCOM sideband bus for LRDIMM data buffer control  In-band Interrupt support  Packet Error Check (PEC)  CCC Packet Error Handling  Error log register  Parity Error Handling  Interrupt Arbitration  I2C Fast-mode Plus (FM+) and I3C Basic compatibility  Switch between I2C mode and I3C Basic  Clearing of Status Registers  Compliance with JESD82-511 specification  I3C Basic Common Command Codes (CCC) Applications:  RDIMM  LRDIMM  AI (Artificial Intelligence)  HPC (High-Performance Computing)  Data-intensive applications
The Aries fgOTN processor family is engineered according to the ITU-T G.709.20 fgOTN standard. This line of processors handles a variety of signals, including E1/T1, FE/GE, and STM1/STM4, effectively monitoring and managing alarms and performance metrics. Aries processors excel at fine-grain traffic aggregation, efficiently channeling fgODUflex traffic across OTN lines to support Ethernet, SDH, PDH client services. Their capacity to map signals to fgODUflex containers, which are then multiplexed into higher order OTN signals, demonstrates their versatility and efficiency. By allowing cascaded configurations with other Aries devices or Apodis processors, Aries products optimize traffic routes through OTN infrastructures, positioning them as essential components in optical networking and next-generation access scenarios.
The SPD5 Hub Function IP has been developed to interface I3C/I2C Host Bus and it allows an isolation of local devices like Temperature Sensor(TS), from master host bus. This SPD5 has Two wire serial interface like SCL, SDA
The GL3590-S is a USB 3.2 Gen 2 Hub Controller designed to provide seamless connectivity via integrated USB Type-C® support. This controller is capable of managing multiple upstream ports, making it ideal for complex data management tasks in modern electronics. Its sophisticated architecture allows for high-speed data transfer, ensuring efficiency in demanding computational environments. Integrated with USB 3.2 Gen 2 hub capabilities, the GL3590-S supports rapid data exchange rates essential for applications needing swift resolution and connectivity. The device plays a crucial role in amplifying the USB connection bandwidth, thereby enhancing the performance and reliability of connected devices. Moreover, this hub controller is equipped with advanced compatibility features, supporting various data transfer protocols. It aims to streamline the integration process across computing platforms, providing a robust solution for today's data-driven ecosystems.
The NVMe Host Controller from iWave Global offers an advanced solution for managing NVMe drive interfaces in computing systems. This controller is designed to facilitate the high-speed data exchange that NVMe drives demand, streamlining operations across data-centric applications. Engineered for scalability and performance, the NVMe Host Controller supports high data throughput, ensuring quick access and transfer of data between storage devices and host systems. Its design caters to the demands of modern computational environments where rapid data retrieval and storage are critical. The controller is integral in systems requiring high-performance storage solutions, and its support for multiple interfaces underscores its adaptability and broad applicability in data-intensive industries such as enterprise storage and high-performance computing.
At the forefront of memory interfaces, Dolphin Technology’s DDR PHY IPs offer exceptional performance and versatility for modern applications. This IP suite is designed to support DDR4, DDR3, and DDR2 standards, as well as LPDDR series memories. Notably, these DDR PHYs are engineered to reach speeds up to 4266 Mbps, ensuring compatibility with high-performance computing requirements. The DDR PHY IPs include features such as slew rate control, per-bit de-skew, gate training, and built-in self-test (BIST), all contributing to their robustness and adaptability in various system environments. They are compliant with the DFI 4.0 specification, providing seamless integration with DDR memory controllers to deliver comprehensive memory subsystem solutions. With proven reliability in silicon, these PHYs have been designed to efficiently integrate into SoCs, offering a high degree of speed and data integrity for advanced semiconductor applications. This makes them suitable for an array of high-performance tasks in industries ranging from consumer electronics to data center operations.
NRAM, or Nanotube-based Random Access Memory, represents a major breakthrough in memory technology by Nantero. It leverages the unique properties of carbon nanotubes, providing an innovative alternative to traditional memory technologies like DRAM and NAND. This technology is renowned for offering extraordinary speed, capable of matching DRAM speeds and being up to 100 times faster than NAND. What's particularly significant about NRAM is its nonvolatile nature, which means it retains data even when power is switched off, leading to devices with 'instant on' capabilities. Additionally, NRAM stands out due to its energy efficiency, often consuming no power in standby mode and requiring minimal energy during operation. This positions it perfectly to meet the energy-saving demands of green data centers, contributing to substantial reductions in electricity usage and carbon footprint. Furthermore, it offers a simple and cost-effective structural design that can be scaled down to below 5 nm, supporting multilayer and 3D configurations, which makes it versatile and ready for future memory scaling needs. NRAM’s robust design also ensures high endurance and environmental resistance, withstanding extreme conditions like heat, cold, and radiation, making it suitable for aerospace and other challenging applications. Coupled with its RadHard capabilities for secure data retention under adverse conditions, NRAM is designed to support critical infrastructure systems. Its integration does not necessitate specialized equipment, allowing for seamless manufacturing within existing CMOS fabs.
KPIT Technologies' Integrated Diagnostics & Aftersales Transformation (iDART) platform addresses the evolving complexities of maintaining software-defined vehicles. Offering a comprehensive suite of tools and services, iDART facilitates efficient diagnostic development, validation, and aftersales service transformation. As vehicles become more software-centric, iDART assists in managing diagnostics across varied hardware and software configurations, ensuring seamless integration and service continuity. The platform excels in automated validation processes, ensuring data accuracy and compliance from legacy to modern systems. KPIT's guided diagnostics and remote troubleshooting solutions enhance first-time-right repair ratios by providing technicians with precise insights, reducing vehicle downtime and improving service throughput. This diagnostic content management streamlines operations and reduces warranty costs, vital for OEMs balancing innovation with sustainability. iDART's focus on service lifecycle management ensures that OEMs can offer enhanced customer engagement beyond the first vehicle owner, fostering lasting customer relationships. Through advanced diagnostic frameworks, KPIT sets a new standard for vehicle service operations, addressing the growing complexities within the automotive industry. By integrating thoroughly tested frameworks and leveraging machine learning-driven diagnostics, KPIT aligns its services with future vehicle ecosystem demands.
The Secondary/Slave PHY by Green Mountain Semiconductor, designed for LPDDR4/4X/5 applications, focuses on enhancing the flexibility and scalability of memory systems. This PHY works in conjunction with primary controllers to expand memory configurations, aiding in the efficient management of complex networking and computing architectures. Engineered to support seamless extension of memory systems, it plays a pivotal role in augmenting the system’s capacity to handle larger data loads without sacrificing speed or efficiency. By providing reliable secondary data paths, it ensures balanced load distribution and enhanced system reliability under varying workloads. The Secondary/Slave PHY is particularly effective in high-performance environments where system robustness and memory accessibility are key. Its integration into platforms demands a nuanced approach to memory management, ensuring continuous and high-performance operations in diverse application landscapes.
The Apodis family of Optical Transport Network processors adheres to ITU-T standards, offering a comprehensive suite for signal termination, processing, and multiplexing. Designed to handle both SONET/SDH and Ethernet client services, these processors map signals to Optical Transport Network (OTN), empowering versatile any-port, any-service configurations. Apodis processors are notable for their capacity to support up to 16 client ports and four 10G OTN line ports, delivering bandwidth scalability up to 40G, crucial for wireless backhaul and fronthaul deployments. With a robust, non-blocking OTN switching fabric, Apodis facilitates seamless client-to-line and line-to-line connections while optimally managing network bandwidth. This adaptability makes the Apodis processors an ideal choice for next-generation access networks and optical infrastructures.
The YouDDR technology offered by Brite Semiconductor encompasses not just DDR controllers and PHY, but also I/O features and specialized software designed for tuning and testing. This forms a comprehensive subsystem delivering efficient data handling with robust performance for high-speed applications.<br><br>Designed with versatility, YouDDR is adaptable to cater to varied DDR technology demands, ensuring seamless integration in diverse electronic environments. Whether in consumer electronics or high-speed computing systems, it enables precise control and optimal function.<br><br>With additional tuning and testing software, the YouDDR system is engineered to maintain performance integrity across extensive operational ranges. It represents a complete solution, addressing every aspect from control to interface and verification.
Dillon Engineering's 2D FFT core delivers robust performance for transforming two-dimensional data sets into the frequency domain with high precision and efficiency. By leveraging both internal and external memory between dual FFT engines, this core optimizes the data processing pipeline, ensuring fast and reliable results even as data complexity increases. Ideal for applications that handle image processing and data matrix transformations, the 2D FFT core navigates data bandwidth constraints with ease, maintaining throughput even for larger data sets. This core's design maximizes data accuracy and minimizes processing delays, crucial for applications requiring precise image recognition and analysis. Thanks to the adaptable nature provided by Dillon's ParaCore Architect, this IP core is easily customized for various FPGA and ASIC environments. Its flexibility and robust processing capabilities make the 2D FFT core a key component for cutting-edge applications in fields where data translation and processing are critical.
The HBM3 PHY & Memory Controller is optimized for AI, HPC, data centers, and networking, conforming to the HBM3 (JESD238A) JEDEC standards. This solution provides a comprehensive PHY and Controller package delivering an average random efficiency exceeding 85%. It supports data rates up to 6400 MT/s for HBM3 and up to 9600 MT/s for HBM3E. Additionally, it features flexible PHY architecture with programmable interface training sequences to customize memory vendor interactions. The design accommodates up to 32Gb per die and supports 16H HBM3 DRAM stacks, being compatible with major 2.5D and 3D packaging technologies. This solution also integrates features for MPFE, RAS, and Debug, making it adaptable for complex design environments. Additional capabilities include support for 2.5D die-to-die interconnects, enhancing its versatility in multi-die configurations.
The Aeonic Power family offers scalable on-die voltage regulation tailored to the power delivery needs of high-performance ICs and chiplets. Featuring a flexible architecture, Aeonic Power solutions enable energy optimization through per-core DVFS, static IR drop mitigation, and the creation of virtual power islands. These products provide observability and noise suppression capabilities, simplifying power distribution for die-to-die interfaces and facilitating enhanced PDN robustness. By integrating sophisticated telemetry, Aeonic Power empowers design teams with unparalleled insights into power behavior and optimizes the power distribution network for energy-efficient operations.
The Ultra-Low Latency 10G Ethernet MAC IP core by Chevin Technology exemplifies cutting-edge design for high-speed network communications, catered specifically to deliver the lowest possible latency. It is meticulously constructed to meet the demands of applications that require minimal delay in data exchange, thus maximising data throughput. The IP core is finely tuned for deployment in FPGAs, optimizing the balance between performance and resource utilization. Benefiting from a streamlined logic architecture, this IP core enhances the efficiency of hardware accelerations and simplifies the incorporation of Ethernet connectivity into customer systems. Its fundamental construction is rooted in Chevin’s extensive experience with Ethernet technologies and it has been thoroughly tested to ensure reliable operation across a diverse range of settings. This Ethernet MAC utilises all-logic architecture which removes need for additional CPU or software intervention, providing immense power savings and reduced system complexity. Features like programmable interframe gap control and flexible licensing allow for the tailored installation in both traditional and contemporary systems. The combination of robust performance capabilities alongside expert support creates a compelling choice for integrators focused on high-speed, low-latency Ethernet solutions.
The AXI4 DMA Controller from Digital Blocks revolutionizes data management in System-on-Chip architectures through high-performance Direct Memory Access capabilities. Supporting a span of 1 to 16 channels, it handles data transfers between memory and peripherals with agility, ideal for both small and large datasets. Designed for high throughput, it includes a multi-channel architecture that can expand from 32 to up to 256 channels, demonstrating exceptional scalability for future data demands. Each channel within the DMA Controller operates independently with dedicated Read and Write Controllers, ensuring minimal overhead during transfers. It facilitates complex data flow configurations including scatter-gather linked-list data controls and comprehensive support for different burst modes within the AXI3 and AXI4 protocols. Its design incorporates advanced features that users can selectively enable to optimize silicon resource usage and cost efficiency. Additionally, it accommodates complex AXI4-Stream to memory-mapped interface transfers, making it versatile for a variety of applications, from high-speed data environments to embedded systems requiring optimized memory access and control.
Dolphin Technology offers a comprehensive range of memory IP products, catering to diverse requirements in semiconductor design. These products include a variety of memory compilers, specialty memory, and robust memory test and repair solutions such as Memory BIST. Designed to meet the demands of contemporary low-power and high-density applications, these IPs are built to work across a broad spectrum of process technologies. Advanced power management features, like light and deep sleep modes and dual rails, enable these products to tackle even the toughest low-leakage challenges. What sets these products apart is their flexibility and adaptability, evident in the support for different memory types and process nodes. Dolphin Technology’s memory IPs benefit from seasoned design teams that have proven their mettle in silicon across several generations. Thus, these IPs are not only versatile but also reliable in serving a wide variety of industry needs for technology firms worldwide. Clients can expect memory solutions that are fine-tuned for both power efficiency and performance. Additional capabilities such as power gating cater to ultra-low power devices while achieving a high level of device integration and compatibility. The specialized focus on low noise and rapid cycle times makes these memory solutions highly effective for performance-driven applications. These features collectively make Dolphin Technology’s memory IP an invaluable asset for semiconductor designers striving for innovation and excellence.
The Zhenyue 510 SSD controller represents a breakthrough in enterprise-grade storage technology. This sophisticated controller is crafted to enhance SSD performance in demanding computing environments, offering speed and durability to enterprise data centers. It features state-of-the-art architectures tailored to meet the intense demands of continuous data inflows typical within server farms and cloud storage infrastructure. Combining advanced processing capabilities with custom algorithmic optimizations, the Zhenyue 510 delivers exceptional read and write cycles, ensuring high throughput and stable data handling. Its robust design not only manages high-capacity data storage efficiently but also ensures reliable data integrity through sophisticated error correction techniques and data management protocols. This SSD controller is designed with adaptability in mind, compatible with a wide range of NAND flash technologies, thus offering significant flexibility for various storage applications. Ideal for data-intensive tasks that require consistent performance, the Zhenyue 510 advances T-Head's position within the SSD industry by setting new standards for speed, efficiency, and dependability.
The LPDDR5/5X PHY & Memory Controller is engineered to deliver high performance while maintaining low power and area efficiency, conforming to LPDDR5/5X JEDEC standard (JESD209-5C). This versatile solution handles data rates up to 6400 MT/s, optionally reaching up to 10667 MT/s, and incorporates a flexible PHY equipped with intelligent interface training sequences. Comprehensive support is extended for x8, x16, and x32 SDRAMs, and configurations up to BG, 8B, and 16B bank modes. The solution's efficient design promotes adaptability and seamless integration within a variety of operating environments, making it an ideal choice for mobile and ultra-portable devices where space and power constraints are paramount. Moreover, this controller's robust design includes features for MPFE, RAS, and Debug enhancements, broadening its application scope across diverse memory management scenarios. The IP’s zoning is particularly tailored to leverage its compact yet powerful framework for high-density deployment scenarios.
The DDR5/4 PHY & Memory Controller provides high-performance, low-power memory interface solutions adhering to JEDEC standards for DDR5 (JESD79-5) and DDR4 (JESD79-4). Featuring a robust PHY and Controller setup, this solution offers an average random efficiency of more than 85%, and data rates reaching up to 6400 MT/s can be achieved. This product is designed for scalability, supporting various SDRAM configurations and extensions. The controller is compatible with x4, x8, and x16 SDRAMs and provides expansive support with 3DS extensions for large-scale deployments. Features such as MPFE, RAS, and Debug add-ons make it suitable for advanced applications requiring meticulous control and maintenance. This IP solution is versatile and tailored for adaptability, catering to components like UDIMM, RDIMM, and LRDIMM. Its PHY offers programmable training sequences, facilitating easy tuning for optimal performance in dynamic environments.
TwinBit Gen-1 is an embedded non-volatile memory solution designed for 180nm to 55nm CMOS logic processes. Known for its high endurance, TwinBit Gen-1 supports more than 10,000 program and erase cycles, making it exceptionally durable. This solution is easily integrated into advanced nodes without the need for additional masks or process alterations, and it spans a memory size range from 64 bits to 512K bits, suitable for applications like analog trimming and security key storage. TwinBit Gen-1 offers benefits such as minimal silicon area requirements and low power operations, making it perfect for automotive applications given its compliance with AEC-Q100 standards. Its built-in test circuits facilitate stress-free test environments, ensuring reliable performance across various operational scenarios.
The AHB-Lite Memory module is a flexible, parameterized soft IP that implements on-chip memory accessible by an AHB-Lite Master. It is tailored to support a wide range of memory configurations, making it a scalable solution for various embedded applications. The module is developed with high configurability to meet specific design needs, including different data widths and memory sizes. This memory IP ensures high-speed, low-latency access for AHB-Lite systems, contributing to efficient data handling within SoC architectures. The design supports both read and write operations and integrates seamlessly into diverse electronic systems. Implementing AHB-Lite Memory provides the necessary infrastructure for robust and reliable memory operations, crucial for maintaining high system performance.
The MVPM100 series represent an innovative leap in particulate matter detection, tailored to meet precise measurement requirements of airborne particles in the PM2.5 class. These sensors leverage microsystem technologies to condense the capabilities of extensive gravimetric sensors into a more manageable format. Unlike traditional particle sensors that typically rely on optical methods, the MVPM100 sensors provide actual weight measurements of particles, ensuring higher precision in varying environments. Designed for versatility, they cater to multiple industries, maintaining a compact yet powerful configuration, imperative for contemporary air quality management solutions. Ideal for both portable and stationary applications, these sensors combine accu
Certus Semiconductor's Digital I/O solutions are engineered to meet various GPIO/ODIO standards. These versatile libraries offer support for standards such as I2C, I3C, SPI, JEDEC CMOS, and more. Designed to withstand extreme conditions, these I/Os incorporate features like ultra-low power consumption, multiple drive strengths, and high levels of ESD protection. These attributes make them suitable for applications requiring resilient performance under harsh conditions. Certus Semiconductor’s offerings also include a variety of advanced features like RGMII-compliant IO cells, offering flexibility for different project needs.
RegSpec is a cutting-edge tool that streamlines the generation of control and status register code, catering to the needs of IP designers by overcoming the limitations of traditional CSR generators. It supports complex synchronization and hardware interactions, allowing designers to automate intricate processes like pulse generation and serialization. Furthermore, it enhances verification by producing UVM-compatible code. This tool's flexibility shines as it can import and export in industry-standard formats such as SystemRDL and IP-XACT, interacting seamlessly with other CSR tools. RegSpec not only generates verilog RTL and SystemC header files but also provides comprehensive documentation across multiple formats including HTML, PDF, and Word. By transforming complex designs into streamlined processes, RegSpec plays a vital role in elevating design efficiency and precision. For system design, it creates standard C/C++ headers that facilitate firmware access, accompanied by SystemC models for advanced system modeling. Such comprehensive functionality ensures that RegSpec is invaluable for organizations seeking to optimize register specification, documentation, and CSR generation in a streamlined manner.
The 10G Ethernet MAC and PCS IP core from Chevin Technology is crafted to ensure seamless integration of high-speed Ethernet connectivity within FPGA platforms. This solution underscores Chevin Technology’s commitment to providing adaptable and resource-efficient Ethernet IP cores. Supporting a range of interfaces, it optimizes the synthesis of duplex 10Gbit/s Ethernet, making it ideal for implementation in systems that require high data throughput. The integration process is made effortless through detailed user guides and expert support, making it possible to incorporate this IP into varied FPGA platforms effectively. Its low-latency architecture supports high-performance communications while occupying minimal FPGA resources. Designed in accordance with IEEE 802.3 standards, this MAC/PCS core facilitates transmitting and receiving data at unrivalled speeds. The compact design ensures that broader functionalities and additional IP can comfortably reside on the FPGA, thereby enriching the application possibilities without inflating costs. Streamlining data transfer processes, the core offers flexible licensing to support various project needs, providing an unparalleled level of adaptability. With strategically laid out features that include CRC32 error detection and correction capabilities, the 10G Ethernet MAC and PCS IP core supports rapid data transfers while maintaining reliability. It incorporates advanced fault management and statistics blocks for detailed operational insights and robust performance monitoring. The core is compatible with leading industry boards and comes equipped with all necessary integrations to ensure optimal functionality across various platforms.
CrossBar's ReRAM Memory technology introduces a revolutionary approach to non-volatile memory that transcends the limitations of traditional memory solutions. ReRAM, or Resistive RAM, distinguishes itself through its simple architectural design, enabling manufacturers to scale it down to sizes smaller than 10nm and integrate it seamlessly with existing logic processes in a single foundry. This advancement allows for unprecedented energy efficiency, with ReRAM consuming just 1/20th of the energy compared to traditional flash memory solutions, while also offering dramatically improved endurance and performance metrics. The scalability of ReRAM supports high-density memory applications, including its potential for 3D stacking, which allows terabytes of storage to be integrated on-chip. ReRAM excels in delivering low latency and high-speed operations, making it especially suitable for applications requiring rapid data access and processing, such as in data centers and IoT devices. Its robust performance characteristics make it an ideal solution for modern computing demands, offering both hard macros and architectural licenses depending on customer needs. Another key benefit of ReRAM is enhanced security, essential in applications ranging from automotive to secure computing. By providing low power consumption combined with high data integrity, ReRAM is positioned as a pivotal technology in future-proofing data storage solutions. It has proven to be a secure alternative to flash memory, with superior operational characteristics that address the diverse needs of contemporary electronic and computing environments.
Ziptilion BW offers an efficient way to enhance DDR bandwidth without sacrificing power or performance. Designed to increase LPDDR bandwidth by as much as 25% at standard operational frequencies and energy usage, this solution serves as a cornerstone for more efficient System on Chip (SoC) designs. Its capability to deliver improvement in bandwidth while maintaining low power consumption makes it a perfect fit for mobile and embedded systems. At its core, Ziptilion BW minimizes latency issues and maximizes throughput through strategic bandwidth enhancements and energy-efficient operational processes. This offers a significant performance boost essential for demanding computational tasks that require reliable and continuous data processing. Its integration aids in producing more capable and responsive computing architectures, meeting the increasing appetite for data crunching. Beyond enhancing performance, Ziptilion BW assures long-term cost savings by reducing energy requirements and preventing hardware overuse. By keeping the energy profile within safe margins, it effectively extends the lifespan of mobile and computational devices, ensuring consistency in operations, especially in ecosystem-driven IoT applications. Its intrinsic ability to handle substantial data volumes efficiently makes it indispensable in current digital transitions.
The Ncore Cache Coherent Interconnect from Arteris provides a quintessential solution for handling multi-core SoC design complications, facilitating heterogeneous coherency and efficient caching. It is distinguished by its high throughput, ensuring reliable and high-performance system-on-chips (SoCs). Ncore's configurable fabric offers designers the ability to establish a multi-die, multi-protocol coherent interconnect where emerge cutting-edge technologies like RISC-V can seamlessly integrate. This IP’s adaptability and scalable design unlock broader performance trajectories, whether for small embedded systems or extensive multi-billion transistor architectures. Ncore's strength lies in its ability to offer ISO 26262 ASIL D readiness, enabling designers to adhere to stringent automotive safety standards. Furthermore, its coupling with Magillem™ automation enhances the potential for rapid IP integration, simplifying multi-die designs and compressing development timelines. In addressing modern computational demands, Ncore is reinforced by robust quality of service parameters, secure power management, and seamless integration capabilities, making it an imperative asset in constructing scalable system architectures. By streamlining memory operations and optimizing data flow, it provides bandwidth that supports both high-end automotive and complex consumer electronics, fostering innovation and market excellence.
The MVDP2000 series introduces differential pressure sensors built on advanced capacitive sensing technology, delivering high sensitivity and stability. Calibrated to provide precise pressure and temperature data, these sensors are crafted for low power needs and rapid data feedback, ideal for situations demanding quick response. An essential component for OEM and portable devices like respiratory equipment and gas flow instruments, these sensors fulfill requirements for accuracy and energy efficiency. Their digital configuration eases integration, supporting applications in various environments with reliable performance. The sensors' specifications include a wide measurement range and a digital interface. They offer detailed data resolution aligned to 15-to-21 bits, with a compact DFN package making them suitable for space-constrained applications.
Dyumnin's RISCV SoC is a versatile platform centered around a 64-bit quad-core server-class RISCV CPU, offering extensive subsystems, including AI/ML, automotive, multimedia, memory, cryptographic, and communication systems. This test chip can be reviewed in an FPGA format, ensuring adaptability and extensive testing possibilities. The AI/ML subsystem is particularly noteworthy due to its custom CPU configuration paired with a tensor flow unit, accelerating AI operations significantly. This adaptability lends itself to innovations in artificial intelligence, setting it apart in the competitive landscape of processors. Additionally, the automotive subsystem caters robustly to the needs of the automotive sector with CAN, CAN-FD, and SafeSPI IPs, all designed to enhance systems connectivity within vehicles. Moreover, the multimedia subsystem boasts a complete range of IPs to support HDMI, Display Port, MIPI, and more, facilitating rich audio and visual experiences across devices.
Tower Semiconductor's BCD technology is engineered for power management solutions, offering a unique combination of bipolar, CMOS, and DMOS transistors. This technology efficiently addresses the need for high-performance power integrated circuits in portable, automotive, and consumer electronics. BCD processes allow for integrating high-voltage and low-voltage devices on the same chip, optimizing space and cost. The BCD technology shines in applications requiring robust power delivery and reliable performance under varying electrical conditions. By leveraging this technology, customers can achieve significant power conversion efficiency, essential for battery-powered and energy-efficient devices. High density integration of components ensures that power ICs remain compact yet versatile. A streamlined design process supports diverse applications from charging systems to energy management, catering to complex power architectures. This integration capability not only boosts device functionality but also enhances thermal management, making these solutions ideal for high-demand environments.
ISPido represents a fully configurable RTL Image Signal Processing Pipeline, adhering to the AMBA AXI4 standards and tailored through the AXI4-LITE protocol for seamless integration with systems such as RISC-V. This advanced pipeline supports a variety of image processing functions like defective pixel correction, color filter interpolation using the Malvar-Cutler algorithm, and auto-white balance, among others. Designed to handle resolutions up to 7680x7680, ISPido provides compatibility for both 4K and 8K video systems, with support for 8, 10, or 12-bit depth inputs. Each module within this pipeline can be fine-tuned to fit specific requirements, making it a versatile choice for adapting to various imaging needs. The architecture's compatibility with flexible standards ensures robust performance and adaptability in diverse applications, from consumer electronics to professional-grade imaging solutions. Through its compact design, ISPido optimizes area and energy efficiency, providing high-quality image processing while keeping hardware demands low. This makes it suitable for battery-operated devices where power efficiency is crucial, without sacrificing the processing power needed for high-resolution outputs.
The RWM6050 Baseband Modem is engineered to facilitate high-data rate applications across wireless communication networks. Designed to serve as a versatile component within various telecommunication systems, it processes signals with precision to enhance data throughput across diverse transmission environments. At its core, the RWM6050 is optimized for operation in complex wireless networks where bandwidth efficiency and robust signal integrity are paramount. It seamlessly integrates into wireless communication frameworks, providing the needed flexibility and scalability to support next-generation network deployments. Through its advanced capabilities, this baseband modem establishes itself as a pivotal element in ensuring reliable, high-speed data transmission. Whether supporting conventional networks or cutting-edge mmWave technology applications, the RWM6050 maintains stellar performance, thereby enhancing the efficiency of communication infrastructures in both commercial and defence sectors.
The Orion MFH IP Cores are designed for optimal performance in 4G mobile fronthaul networks, compliant with the ITU-T specifications for CPRI signal multiplexing. They adeptly handle various CPRI options, ranging from 2.4576 Gbps to 12.16512 Gbps, ensuring high compatibility and performance. Featuring both muxponder and transponder configurations, Orion cores facilitate the efficient mapping and transport of CPRI signals via Optical Transport Network infrastructures, ideal for modern telecommunications frameworks. Their advanced capabilities enable telecommunications providers to enhance their network reliability and service delivery, adapting seamlessly to different fronthaul scenarios.
EZiD211 is a state-of-the-art modulator and demodulator designed to enhance satellite communication systems, supporting DVB-S2X. This product focuses on managing low Earth, medium Earth, and geostationary satellite communications with advanced features such as beam hopping, VLSNR, and superframe support, making it an ideal choice for future satellite technologies. The aim of EZiD211 is to improve satellite communication efficiency and accuracy, providing a robust solution for data, IoT, and modem infrastructure. The design has been executed under European programs to showcase new functionalities and ensure the product meets the highest standards for commercial use. EASii IC leverages the latest developments in DVB standards to ensure that EZiD211 can handle various environments, offering enhanced performance through its wide range of features. The product is available in a QFN 13×13 package, with options for evaluation boards, supporting seamless integration into existing systems.
The Scorpion family of processors offers support for OSU containers as per the CCSA and IEEE standards, particularly the OSUflex standard. These processors accommodate various client-side signals, including E1/T1, FE/GE, and STM1/STM4, ensuring robust performance monitoring and optional Ethernet rate limitation. Scorpion processors can adeptly map these client signals to OSU or ODU containers, which are subsequently multiplexed to OTU-1 lines. Known for their flexibility and efficiency in handling diverse traffic types, Scorpion processors serve as foundational elements for advancements in access networks and optical service units, ensuring sustained performance in increasingly complex networking environments.
The Cyclone V FPGA with Integrated PQC Processor by ResQuant is a specialized product that comes pre-equipped with a comprehensive NIST PQC cryptography suite. This FPGA is tailored for applications requiring a robust proof-of-concept for quantum-safe implementations. It ensures seamless integration into existing systems, providing a practical platform for testing and deployment in quantum-secure environments. This product is available at a competitive price and represents an ideal starting point for entities looking to explore and adopt quantum-resilient technologies. Its configuration allows for straightforward implementation in diverse hardware infrastructures while offering a reliable option for organizations aiming to stay ahead in the evolving cyber security landscape. By incorporating the latest in cryptographic standards and ensuring vendor independence, the Cyclone V FPGA with Integrated PQC Processor by ResQuant effectively bridges current hardware technologies and future-proof security needs. It supports industry-wide applications, from IoT and ICT to automotive and military sectors, underscoring ResQuant's versatility in hardware security solutions.
IPM-NVMe Device is a high-performance data transfer management solution crafted for PCIe-based storage systems. This IP core functions as a vital interface between communication and NAND flash controllers, effectively relieving host CPU workloads. Fully compliant with UNH-IOL NVM Express, it provides extensive integration options for a host of system designs. The IPM-NVMe Device supports automatic command processing and multi-channel DMA, capable of managing up to 65,536 I/O queues. It features advanced capabilities such as weighted round-robin queue arbitration, asynchronous event management, and low-power architecture, all optimized for seamless scalability and integration into multiple PCIe generations. Manufacturers benefit from its standardized driver, facilitating easier software development and reducing costs. Whether in FPGA or SoC designs, this IP core is designed to support next-generation emerging memory solutions like MRAM and ReRAM, making it adaptable for use in both consumer and enterprise products.
The Aeonic Integrated Droop Response System addresses droop issues in complex integrated circuits by combining mitigation and detection mechanisms in a seamlessly integrated package. This system supports fine-grained DVFS capability and rapid adaptation, providing significant power savings for SoCs. It offers comprehensive observability tools crucial for modern silicon health management, including multi-threshold detection and rapid response features within just a few clock cycles. This integration promotes energy efficiency by reducing voltage margins and supports various process technologies through a process portable design.
The NVMe Streamer from MLE empowers next-generation storage solutions with its cutting-edge data streaming capabilities. NVMe technology, known for robust performance, is utilized here to achieve accelerated data processing and storage for critical applications. The NVMe Streamer provides high-speed connectivity, facilitating seamless data capture and record-keeping in high-bandwidth environments, such as cloud computing and data centers. With support for PCIe 3.0/4.0/5.0 standards, this IP core ensures compatibility with present and future hardware, fostering consistent and reliable performance across deployments. It acts as a pivotal component for computational storage and data movement, backing up extensive data processing with minimal latency and maximum throughput, essential for real-time operations and intensive data tasks. Design flexibility inherent in the NVMe Streamer allows it to be tailored to specific infrastructure needs, offering scalable solutions that can grow with technological advancements. This adaptability is key for organizations seeking to future-proof their storage capabilities in a fast-evolving digital landscape.
ArrayNav is a groundbreaking GNSS solution utilizing patented adaptive antenna technology, crafted to provide automotive Advanced Driver-Assistance Systems (ADAS) with unprecedented precision and capacity. By employing multiple antennas, ArrayNav substantially enhances sensitivity and coverage through increased antenna gain, mitigates multipath fading with antenna diversity, and offers superior interference and jamming rejection capabilities. This advancement leads to greater accuracy in open environments and markedly better functionality within urban settings, often challenging due to signal interference. It is designed to serve both standalone and cloud-dependent use cases, thereby granting broad application flexibility.
MEMTECH's L-Series LPDDR4/4x/5 Controller caters to energy-efficient applications requiring low power alongside high performance. Designed for seamless integration with LPDDR PHYs, this controller supports multiple AXI ports and end-to-end QoS priority. Compliant with JEDEC standards, it is tailor-made for devices needing rigorous performance metrics while conserving energy, making it ideal for portable computing devices and low-power applications.
Analog Bits specializes in innovative sensor solutions designed for precise process, voltage, and temperature (PVT) monitoring. Their advanced sensor IP is crucial in maintaining the stability and performance of semiconductor devices by ensuring accurate monitoring of critical parameters. These sensors are integrally designed to be compact, consuming minimal power while providing high accuracy necessary for efficient power delivery systems. They are silicon-proven at scales down to 5nm and are adaptable for a wide range of applications, from consumer electronics to automotive markets. By detecting voltage spikes or other anomalies, these sensors enhance security and operational efficiency. Their integration capability allows for seamless on-die deployment, empowering software-based load balancing to optimize energy consumption across various technology platforms.
The SmartMem Subsystem is designed to enhance memory functionality through a synthesisable and configurable architecture. This memory subsystem significantly boosts power efficiencies and improves both performance and endurance. Not limited to just Numem's own products, it can easily interface with other high-performance MRAMs, RRAM, and Flash technologies, offering versatility across different hardware needs. Built with Numem's thorough memory expertise and innovative patents, the SmartMem Subsystem delivers MRAM performance that rivals SRAM, characterized by much lower standby power. Its intelligent power management system controls MRAM’s non-volatile nature for ultra-efficient operation, making it robust against endurance challenges while seamlessly integrating into varied systems, whether in edge devices or expansive data centers. The subsystem supports software-defined scalability, which negates the necessity for new hardware designs. This makes it an excellent choice for future-proofing memory solutions in AI workloads, ensuring agility and adaptability across rapid advancements in AI applications.
The UltraLong FFT core from Dillon Engineering offers exceptional performance for applications requiring extensive sequence lengths. This core utilizes external memory in coordination with dual FFT engines to facilitate high throughput. While it typically hinges on memory bandwidth for its speed, the UltraLong FFT effectively processes lengthy data sequences in a streamlined manner. This core is characterized by its medium to high-speed capabilities and is an excellent choice for applications where external memory can be leveraged to support processing requirements. Its architecture allows for flexible design implementation, ensuring seamless integration with existing systems, and is particularly well-suited for advanced signal processing applications in both FPGA and ASIC environments. With Dillon's ParaCore Architect tool, customization and re-targeting of the IP core towards any technology are straightforward, offering maximum adaptability. This FFT solution stands out for its capacity to manage complex data tasks, making it an ideal fit for cutting-edge technologies demanding extensive data length processing efficiency.
PermSRAM is a highly flexible non-volatile memory macro that functions on a foundry standard CMOS platform, suitable for process nodes ranging from 180nm to 28nm and beyond. It features a range of non-volatile memory capabilities, including a one-time programmable ROM and a pseudo multi-time PROM, with a multi-page configuration. The memory covers wide sizes from 64 bits to 512K bits and incorporates a non-rewritable hardware safety lock for secure code storage, offering robust security for sensitive data. This IP is ideal for applications such as security code storage, program storage, and analog trimming, thanks to its invisible charge trap memory mechanism and built-in self-test capabilities. PermSRAM can achieve automotive-grade data retention over high temperatures, making it a reliable choice for high-security applications.
Avant Technology's DRAM memory modules provide vital solutions for various industries, such as gaming, point-of-sale systems, and medical devices. These modules meet the JEDEC standards for reliability and performance, ensuring robust functionality for demanding applications. The industrial embedded series offers numerous options tailored to specific needs, including low voltage and high capacitance variants, which deliver both enhanced energy efficiency and decreased power consumption. The DRAM modules are available in different form factors like UDIMM, SODIMM, ECC DIMM, and Mini DIMM to cater to diverse application requirements. They support various interfaces, prominently DDR3, DDR4, and DDR5, offering scalable performance to match the advancing requirements of modern systems. Avant Technology ensures that these memory solutions can operate effectively across industrial, commercial, and consumer-grade environments, making them versatile for a wide range of devices. This memory technology enhances the speed and efficiency of devices, allowing for quicker data access and improved system responsiveness, vital for applications that demand high bandwidth and low latency. With these DRAM modules, Avant Technology supports innovations across sectors, helping their clients maintain cutting-edge operations in rapidly evolving technological landscapes.
The MVWS4000 series encapsulates a trio of sensors in a single package, measuring humidity, pressure, and temperature. Crafted with sophisticated Silicon Carbide technology, these sensors are renowned for their accuracy and efficiency, presenting exceptionally fast sampling rates to serve precise, real-time environmental assessments. Designed for robustness, these units feature various grades of precision to accommodate different financial and operational requirements, ensuring high performance for sensitive applications. Their ultra-low energy needs and reliability position them as ideal candidates for OEM products and battery-powered devices. With their compact size yet comprehensive capabilities, the MVWS4000 series lends itself well to sectors including, but not limited to, industrial settings, the consumer marketplace, healthcare, and automotive systems.
Spectral CustomIP caters to bespoke memory architecture needs, offering a wide array of specially designed memory structures like Binary and Ternary CAMs, and multi-ported memories. These solutions integrate optimized circuitry for high speed and low power, ideal for complex IC applications. Spectral CustomIP is based on standard CMOS technology and is suitable for SOI or embedded Flash processes, making it versatile for various applications. Each module uses SpectralTrak technology for proactive monitoring of operational conditions, ensuring robust performance across different environments. The products support extensive configurability options like multi-bank and multi-port architectures, allowing for a tailored fit in specific applications. CustomIP addresses specialized requirements in networking, graphics applications, and mobile devices, providing unique power-down and test mode features. Offering a comprehensive set of tools for custom development, these solutions can be extensively modified and optimized by customers, delivering added value in terms of flexibility and control.
Join the world's most advanced semiconductor IP marketplace!
It's free, and you'll get all the tools you need to discover IP, meet vendors and manage your IP workflow!
Join the world's most advanced AI-powered semiconductor IP marketplace!
It's free, and you'll get all the tools you need to advertise and discover semiconductor IP, keep up-to-date with the latest semiconductor news and more!
Plus we'll send you our free weekly report on the semiconductor industry and the latest IP launches!