Find IP Sell IP AI Assistant Chip Talk Chip Videos About Us
Log In

All IPs > Graphic & Peripheral

Graphic & Peripheral Semiconductor IP

Graphic & Peripheral Semiconductor IPs are critical components in the design and development of electronics that require efficient and robust control over multimedia and peripheral functions. This category of semiconductor IP encompasses a wide array of technologies used to manage and optimize graphics rendering, audio processing, data communication, and peripheral interfaces in electronic devices such as computers, smartphones, tablets, and other smart gadgets.

In this vivid category, you'll find a variety of subcategories tailored to specific functionalities. For instance, the Graphics Processing Unit (GPU) semiconductor IPs are pivotal for rendering images and video, essential in gaming, virtual reality, and professional content creation. Audio Controllers handle sound processing, ensuring crisp and seamless audio output, crucial for devices prioritizing high-quality sound delivery.

Other key components in the Graphic & Peripheral category include Peripheral Controllers, which facilitate the integration of various input/output devices, enhancing the device's interactivity and user experience. DMA Controllers are responsible for moving data efficiently between memory and peripherals, minimizing the CPU load. These IPs enhance overall system performance by ensuring that data flow is smooth and uninterrupted.

From Clock Generators that synchronize the entire system's operations to Interrupt Controllers managing priority tasks, each semiconductor IP in this category plays a unique role in ensuring that electronic devices operate at peak efficiency. By exploring these subcategories, companies and developers can find the precise semiconductors needed to support cutting-edge multimedia and peripheral technologies in their next product launch.

All semiconductor IP
Graphic & Peripheral
A/D Converter Amplifier Analog Comparator Analog Filter Analog Front Ends Analog Multiplexer Analog Subsystems Clock Synthesizer Coder/Decoder D/A Converter DC-DC Converter DLL Graphics & Video Modules Oscillator Oversampling Modulator Photonics PLL Power Management RF Modules Sensor Switched Cap Filter Temperature Sensor Voltage Regulator CAN CAN XL CAN-FD FlexRay LIN Other Safe Ethernet Arbiter Audio Controller Clock Generator CRT Controller Disk Controller DMA Controller GPU Input/Output Controller Interrupt Controller Keyboard Controller LCD Controller Other Peripheral Controller Receiver/Transmitter Timer/Watchdog VME Controller AMBA AHB / APB/ AXI CXL D2D Gen-Z HDMI I2C IEEE 1394 IEEE1588 Interlaken MIL-STD-1553 MIPI Multi-Protocol PHY Other PCI PCMCIA PowerPC RapidIO SAS SATA Smart Card USB V-by-One VESA Embedded Memories I/O Library Other Standard cell DDR eMMC Flash Controller HBM Mobile DDR Controller Mobile SDR Controller NAND Flash ONFI Controller Other RLDRAM Controller SD SDIO Controller SDRAM Controller SRAM Controller 2D / 3D ADPCM Audio Interfaces AV1 Camera Interface CSC DVB H.263 H.264 H.265 H.266 Image Conversion JPEG JPEG 2000 MHL MPEG / MPEG2 MPEG 4 MPEG 5 LCEVC NTSC/PAL/SECAM QOI TICO VC-2 HQ VGA WMA WMV Network on Chip Multiprocessor / DSP Processor Core Dependent Processor Core Independent AI Processor Audio Processor Building Blocks Coprocessor CPU DSP Core IoT Processor Microcontroller Other Processor Cores Vision Processor Wireless Processor Content Protection Software Cryptography Cores Cryptography Software Library Embedded Security Modules Other Platform Security Security Protocol Accelerators Security Subsystems 3GPP-5G 3GPP-LTE 802.11 802.16 / WiMAX Bluetooth CPRI Digital Video Broadcast GPS JESD 204A / JESD 204B NFC OBSAI Other UWB W-CDMA Wireless USB ATM / Utopia Cell / Packet Error Correction/Detection Ethernet Fibre Channel Interleaver/Deinterleaver Modulation/Demodulation Optical/Telecom
Vendor

Akida 2nd Generation

The Akida 2nd Generation continues BrainChip's legacy of low-power, high-efficiency AI processing at the edge. This iteration of the Akida platform introduces expanded support for various data precisions, including 8-, 4-, and 1-bit weights and activations, which enhance computational flexibility and efficiency. Its architecture is significantly optimized for both spatial and temporal data processing, serving applications that demand high precision and rapid response times such as robotics, advanced driver-assistance systems (ADAS), and consumer electronics. The Akida 2nd Generation's event-based processing model greatly reduces unnecessary operations, focusing on real-time event detection and response, which is vital for applications requiring immediate feedback. Furthermore, its sophisticated on-chip learning capabilities allow adaptation to new tasks with minimal data, fostering more robust AI models that can be personalized to specific use cases without extensive retraining. As industries continue to migrate towards AI-powered solutions, the Akida 2nd Generation provides a compelling proposition with its improved performance metrics and lower power consumption profile.

BrainChip
11 Categories
View Details

KL730 AI SoC

The KL730 is a third-generation AI chip that integrates advanced reconfigurable NPU architecture, delivering up to 8 TOPS of computing power. This cutting-edge technology enhances computational efficiency across a range of applications, including CNN and transformer networks, while minimizing DDR bandwidth requirements. The KL730 also boasts enhanced video processing capabilities, supporting 4K 60FPS outputs. With expertise spanning over a decade in ISP technology, the KL730 stands out with its noise reduction, wide dynamic range, fisheye correction, and low-light imaging performance. It caters to markets like intelligent security, autonomous vehicles, video conferencing, and industrial camera systems, among others.

Kneron
TSMC
12nm
16 Categories
View Details

UCIe-S 1.1/PCIe Gen6 Controller

Overview: The UCIe IP supports multiple protocols (CXL/PCIe/Streaming) to connect chiplets, reducing overall development cycles for IPs and SOCs. With flexible application and PHY interfaces, The UCIe IP is ideal for SOCs and chiplets. Key Features:  Supports UCIe 1.0 Specification  Supports CXL 2.0 and CXL 3.0 Specifications  Supports PCIe Gen6 Specification  Supports PCIe Gen5 and older versions of PCIe specifications  Supports single and two-stack modules  Supports CXL 2.0 68Byte flit mode with Fallback mode for PCIe non-flit mode transfers  Supports CXL 3.0 256Byte flit mode  Supports PCIe Gen6 flit mode  Configurable up to 64-lane configuration for Advanced UCIe modules and 16 lanes for Standard UCIe modules  Supports sideband and Mainband signals  Supports Lane repair handling  Data to clock point training and eye width sweep support from transmitter and receiver ends  UCIe controller can work as Downstream or Upstream  Main Band Lane reversal supported  Dynamic sense of normal and redundant clock and data lines activation  UCIe enumeration through DVSEC  Error logging and reporting supported  Error injection supported through Register programming  RDI/FDI PM entry, Exit, Abort flows supported  Dynamic clock gang at adapter supported Configurable Options:  Maximum link width (x1, x2, x4, x8, x16)  MPS (128B to 4KB)  MRRS (128B to 4KB)  Transmit retry/Receive buffer size  Number of Virtual Channels  L1 PM substate support  Optional Capability Features can be Configured  Number of PF/VFDMA configurable Options  AXI MAX payload size Variations  Multiple CPI Interfaces (Configurable)  Cache/memory configurable  Type 0/1/2 device configurable

Plurko Technologies
All Foundries
All Process Nodes
Peripheral Controller
View Details

LVDS IP

The LVDS IP from Sunplus is optimized for high-speed differential signaling, perfect for video, graphics, and other data-intensive applications. It offers robust performance with low electromagnetic interference, providing a reliable data communication channel. This IP is tailored for integration into systems that require efficient long-distance data transfer with minimal signal degradation.

Sunplus Technology Co., Ltd.
AMBA AHB / APB/ AXI, Peripheral Controller, Receiver/Transmitter, V-by-One, VESA
View Details

Akida IP

Akida IP represents BrainChip's groundbreaking approach to neuromorphic AI processing. Inspired by the efficiencies of cognitive processing found in the human brain, Akida IP delivers real-time AI processing capabilities directly at the edge. Unlike traditional data-intensive architectures, it operates with significantly reduced power consumption. Akida IP's design supports multiple data formats and integrates seamlessly with other hardware platforms, making it flexible for a wide range of AI applications. Uniquely, it employs sparsity, focusing computation only on pertinent data, thereby minimizing unnecessary processing and conserving power. The ability to operate independently of cloud-driven data processes not only conserves energy but enhances data privacy and security by ensuring that sensitive data remains on the device. Additionally, Akida IP’s temporal event-based neural networks excel in tracking event patterns over time, providing invaluable benefits in sectors like autonomous vehicles where rapid decision-making is critical. Akida IP's remarkable integration capacity and its scalability from small, embedded systems to larger computing infrastructures make it a versatile choice for developers aiming to incorporate smart AI capabilities into various devices.

BrainChip
AI Processor, Coprocessor, CPU, Cryptography Cores, GPU, Input/Output Controller, IoT Processor, Platform Security, Processor Core Independent, Vision Processor
View Details

AI Camera Module

Altek's AI Camera Module integrates sophisticated imaging technology with artificial intelligence, providing a powerful solution for high-definition visual capture and AI-based image processing. This module is tailored for applications where high precision and advanced analytic capabilities are required, such as in security systems and automotive technology. The module is equipped with a broad range of functionalities, including facial recognition, motion detection, and edge computing. It harnesses AI to process images in real-time, delivering insights and analytics that support decision-making processes in various environments. By combining AI with its imaging sensors, Altek enables next-generation visual applications that require minimal human intervention. Altek's AI Camera Module stands out for its high-degree of integration with IoT networks, allowing for seamless connectivity across devices. Its adaptability to different environments and conditions makes it a highly versatile tool. The module's design ensures durability and reliability, maintaining performance even under challenging conditions, thereby ensuring consistent and accurate image capture and processing.

Altek Corporation
UMC
22nm
2D / 3D, AI Processor, Audio Interfaces, GPU, Image Conversion, IoT Processor, JPEG, Receiver/Transmitter, SATA, Vision Processor
View Details

JESD251 xSPI Host/Device Controller

Overview: The Expanded Serial Peripheral Interface (xSPI) Master/Slave controller offers high data throughput, low signal count, and limited backward compatibility with legacy SPI devices. It is designed to connect xSPI Master/Slave devices in computing, automotive, Internet of Things, embedded systems, and mobile processors to various peripherals such as non-volatile memories, graphics peripherals, networking devices, FPGAs, and sensor devices. Key Features:  Compliance with JEDEC standard JESD251 eXpanded SPI for Non-Volatile Memory Devices, Version 1.0  Support for Single master and multiple slaves per interface port  Single Data Rate (SDR) and Double Data Rate (DDR) support  Source synchronous clocking  Deep Power Down (DPD) enter and exit commands  Eight IO ports in standard, expandable based on system requirements  Optional Data Strobe (DS) for write masking  bit wide SDR transfer support  Profile 1.0 Commands for non-volatile memory device management  Profile 2.0 Commands for read or write data for various slave devices Applications:  Consumer Electronics  Defense & Aerospace  Virtual Reality  Augmented Reality  Medical  Biometrics  Automotive Devices  Sensor Devices

Plurko Technologies
All Foundries
All Process Nodes
Peripheral Controller
View Details

Aries fgOTN Processors

The Aries fgOTN processor family is engineered according to the ITU-T G.709.20 fgOTN standard. This line of processors handles a variety of signals, including E1/T1, FE/GE, and STM1/STM4, effectively monitoring and managing alarms and performance metrics. Aries processors excel at fine-grain traffic aggregation, efficiently channeling fgODUflex traffic across OTN lines to support Ethernet, SDH, PDH client services. Their capacity to map signals to fgODUflex containers, which are then multiplexed into higher order OTN signals, demonstrates their versatility and efficiency. By allowing cascaded configurations with other Aries devices or Apodis processors, Aries products optimize traffic routes through OTN infrastructures, positioning them as essential components in optical networking and next-generation access scenarios.

Tera-Pass
AMBA AHB / APB/ AXI, HBM, NAND Flash, PCMCIA, Receiver/Transmitter, SAS
View Details

LC-PLLs

Silicon Creations delivers precision LC-PLLs designed for ultra-low jitter applications requiring high-end performance. These LC-tank PLLs are equipped with advanced digital architectures supporting wide frequency tuning capabilities, primarily suited for converter and PHY applications. They ensure exceptional jitter performance, maintaining values well below 300fs RMS. The LC-PLLs from Silicon Creations are characterized by their capacity to handle fractional-N operations, with active noise cancellation features allowing for clean signal synthesis free of unwanted spurs. This architecture leads to significant power efficiencies, with some IPs consuming less than 10mW. Their low footprint and high frequency integrative capabilities enable seamless deployments across various chip designs, creating a perfect balance between performance and size. Particular strength lies in these PLLs' ability to meet stringent PCIe6 reference clocking requirements. With programmable loop bandwidth and an impressive tuning range, they offer designers a powerful toolset for achieving precise signal control within cramped system on chip environments. These products highlight Silicon Creations’ commitment to providing industry-leading performance and reliability in semiconductor design.

Premium Vendor
Silicon Creations
GLOBALFOUNDRIES, TSMC, UMC
10nm, 28nm
Amplifier, Clock Generator, Photonics, PLL
View Details

Chimera GPNPU

The Chimera GPNPU from Quadric is engineered to meet the diverse needs of modern AI applications, bridging the gap between traditional processing and advanced AI model requirements. It's a fully licensable processor, designed to deliver high AI inference performance while eliminating the complexity of traditional multi-core systems. The GPNPU boasts an exceptional ability to execute various AI models, including classical backbones, state-of-the-art transformers, and large language models, all within a single execution pipeline.\n\nOne of the core strengths of the Chimera GPNPU is its unified architecture that integrates matrix, vector, and scalar processing capabilities. This singular design approach allows developers to manage complex tasks such as AI inference and data-parallel processing without resorting to multiple tools or artificial partitioning between processors. Users can expect heightened productivity thanks to its modeless operation, which is fully programmable and efficiently executes C++ code alongside AI graph code.\n\nIn terms of versatility and application potential, the Chimera GPNPU is adaptable across different market segments. It's available in various configurations to suit specific performance needs, from single-core designs to multi-core clusters capable of delivering up to 864 TOPS. This scalability, combined with future-proof programmability, ensures that the Chimera GPNPU not only addresses current AI challenges but also accommodates the ever-evolving landscape of cognitive computing requirements.

Quadric
15 Categories
View Details

xcore.ai

xcore.ai is a versatile and powerful processing platform designed for AIoT applications, delivering a balance of high performance and low power consumption. Crafted to bring AI processing capabilities to the edge, it integrates embedded AI, DSP, and advanced I/O functionalities, enabling quick and effective solutions for a variety of use cases. What sets xcore.ai apart is its cycle-accurate programmability and low-latency control, which improve the responsiveness and precision of the applications in which it is deployed. Tailored for smart environments, xcore.ai ensures robust and flexible computing power, suitable for consumer, industrial, and automotive markets. xcore.ai supports a wide range of functionalities, including voice and audio processing, making it ideal for developing smart interfaces such as voice-controlled devices. It also provides a framework for implementing complex algorithms and third-party applications, positioning it as a scalable solution for the growing demands of the connected world.

XMOS Semiconductor
21 Categories
View Details

Expanded Serial Peripheral Interface (xSPI) Master Controller

Our Expanded Serial Peripheral Interface (JESD251) Master controller features a low signal count and high data bandwidth, making it ideal for use in computing, automotive, Internet of Things, embedded systems, and mobile system processors. It connects multiple sources of Serial Peripheral Interface (xSPI) slave devices, including nonvolatile memories, graphics peripherals, networking peripherals, FPGAs, and sensor devices. Features • Compliant with JEDEC standard JESD251 expanded Serial Peripheral Interface (xSPI) for Non-Volatile Memory Devices, Version 1.0. • Supports a single master and multiple slaves per interface port. • Supports Single Data Rate and Double Data Rate. • Supports source synchronous clocking. • Supports data transfer rates up to: o 400MT/s (200MHz Clock) o 333MT/s (167MHz Clock) o 266MT/s (133MHz Clock) o 200MT/s (100MHz Clock) • Supports Deep Power Down (DPD) enter and exit commands. • Standard support for eight IO ports, with the possibility to increase IO ports based on system performance requirements. • Optional support for Data Strobe (DS) for writemasking. • Supports 1-bit wide SDR transfer. • Supports Profile 1.0 commands to manage nonvolatile memory devices. • Supports Profile 2.0 commands to read or writedata for any type of slave device. • Compatible with non-volatile memory arrays such as NOR Flash, NAND Flash, FRAM, and nvSRAM. • Compatible with volatile memory arrays such as SRAM, PSRAM, and DRAM. • Supports register-mapped input/output functions. • Supports programmable function devices such as FPGAs. Application • Consumer Electronics. • Defence & Aerospace. • Virtual Reality. • Augmented Reality. • Medical. • Biometrics (Fingerprints, etc). • Automotive Devices. • Sensor Devices. Deliverables • Verilog Source code. • User Guide. • IP Integration Guide. • Run and Synthesis script. • Encrypted Verification Testbench Environment. • Basic Test-suite.

Plurko Technologies
All Foundries
All Process Nodes
Peripheral Controller
View Details

NeuroVoice AI Chip for Voice Processing

The NeuroVoice chip is designed to address common challenges faced by voice processing devices, such as efficient power consumption and data processing in noisy environments. This ultra-low-power chip implements NASP technology to ensure continuous on-device processing, enabling effective voice recognition and command execution without requiring cloud connectivity. It is ideal for applications in smart home devices and personal wearables due to its energy-efficient design. NeuroVoice excels at extracting and amplifying human voices in noisy surroundings, providing a clear audio experience for various consumer applications. Additionally, it supports features like voice authentication and speaker recognition, making it a versatile component for devices requiring advanced voice identification capabilities. Due to its low power needs, this chip ensures the longevity of battery-operated devices, enhancing their usability and consumer appeal. The integrated NASP technology allows NeuroVoice to bypass background noise efficiently, a feature extremely beneficial for applications in bustling environments. This positioning makes it an excellent choice for developers looking to create robust, user-friendly voice-activated systems. Its adaptability ensures seamless integration into existing infrastructure, facilitating a swift transition to more advanced voice technology ecosystems.

Polyn Technology Ltd.
Audio Processor, Disk Controller
View Details

ARINC 818 Switch IP Core

iWave Global introduces the ARINC 818 Switch, a pivotal component in the management and routing of video data within avionics systems. Designed for applications that require efficient video data distribution and management, the switch is optimized for performance in environments with stringent data handling requirements. The switch's architecture supports a high level of bandwidth, allowing for the smooth routing of multiple video streams in real-time. Its design includes advanced features that ensure low-latency, error-free data transfer, integral to maintaining the integrity and reliability of video data in critical applications. Featuring robust interoperability characteristics, the ARINC 818 Switch easily integrates into existing systems, facilitating modular expansion and adaptability to new technological standards. It is indispensable for any aerospace project that involves complex video data management, providing a stable platform for video data routing and switching.

iWave Global
AMBA AHB / APB/ AXI, Coder/Decoder, Peripheral Controller
View Details

KL630 AI SoC

The KL630 is a pioneering AI chipset featuring Kneron's latest NPU architecture, which is the first to support Int4 precision and transformer networks. This cutting-edge design ensures exceptional compute efficiency with minimal energy consumption, making it ideal for a wide array of applications. With an ARM Cortex A5 CPU at its core, the KL630 excels in computation while maintaining low energy expenditure. This SOC is designed to handle both high and low light conditions optimally and is perfectly suited for use in diverse edge AI devices, from security systems to expansive city and automotive networks.

Kneron
TSMC
12nm LP/LP+
ADPCM, AI Processor, Camera Interface, CPU, GPU, Input/Output Controller, Processor Core Independent, USB, VGA, Vision Processor
View Details

GenAI v1

RaiderChip's GenAI v1 is a pioneering hardware-based generative AI accelerator, designed to perform local inference at the Edge. This technology integrates optimally with on-premises servers and embedded devices, offering substantial benefits in privacy, performance, and energy efficiency over traditional hybrid AI solutions. The design of the GenAI v1 NPU streamlines the process of executing large language models by embedding them directly onto the hardware, eliminating the need for external components like CPUs or internet connections. With its ability to support complex models such as the Llama 3.2 with 4-bit quantization on LPDDR4 memory, the GenAI v1 achieves unprecedented efficiency in AI token processing, coupled with energy savings and reduced latency. What sets GenAI v1 apart is its scalability and cost-effectiveness, significantly outperforming competitive solutions such as Intel Gaudi 2, Nvidia's cloud GPUs, and Google's cloud TPUs in terms of memory efficiency. This solution maximizes the number of tokens generated per unit of memory bandwidth, thus addressing one of the primary limitations in generative AI workflow. Furthermore, the adept memory usage of GenAI v1 reduces the dependency on costly memory types like HBM, opening the door to more affordable alternatives without diminishing processing capabilities. With a target-agnostic approach, RaiderChip ensures the GenAI v1 can be adapted to various FPGAs and ASICs, offering configuration flexibility that allows users to balance performance with hardware costs. Its compatibility with a wide range of transformers-based models, including proprietary modifications, ensures GenAI v1's robust placement across sectors requiring high-speed processing, like finance, medical diagnostics, and autonomous systems. RaiderChip's innovation with GenAI v1 focuses on supporting both vanilla and quantized AI models, ensuring high computation speeds necessary for real-time applications without compromising accuracy. This capability underpins their strategic vision of enabling versatile and sustainable AI solutions across industries. By prioritizing integration ease and operational independence, RaiderChip provides a tangible edge in applying generative AI effectively and widely.

RaiderChip
GLOBALFOUNDRIES, TSMC
28nm, 65nm
AI Processor, AMBA AHB / APB/ AXI, Audio Controller, Coprocessor, CPU, Ethernet, Microcontroller, Multiprocessor / DSP, PowerPC, Processor Core Dependent, Processor Cores
View Details

ARINC 818 Product Suite

The ARINC 818 Product Suite is a comprehensive collection of tools and resources designed to support the full development lifecycle for ARINC 818 enabled equipment. This suite assists in the implementation and testing of ARINC 818 protocols, which are crucial for systems that require high-performance video and data transmission, such as in avionics and defense applications. The product suite is built to facilitate not only the development and qualification but also the simulation of ARINC 818 products, ensuring effective integration into mission-critical environments. The suite’s tools include development software and Implementer's guides, enabling seamless access to ARINC 818 capabilities.

Great River Technology, Inc.
802.11, AMBA AHB / APB/ AXI, Analog Front Ends, Audio Interfaces, Ethernet, Graphics & Video Modules, I2C, MIPI, MPEG 5 LCEVC, Peripheral Controller, V-by-One, VC-2 HQ
View Details

PCIe Gen6 DM/RC/EP Controller

Overview: PCIe Gen6 is a high-speed, layered protocol interconnect interface supporting speeds up to 64GT/s, featuring multi-lanes and links. The Transport, Data Link, and Physical layers specified in the PCIe specification are implemented, along with PIPE interface logic connecting to PHY and AXI Bridging logic for application connectivity. Specifications:  Supports PCIe Gen 6 and Pipe 5.X Specifications  Core supports Flit and non-Flit Mode  Lane Configurations: X16, X8, X4, X2, X1  AXI MM and Streaming supported  Supports Gen1 to Gen6 modes  Data rate support of 2.5 GT/s, 5 GT/s, 8 GT/s, 16 GT/s, 32 GT/s, 64 GT/s  PAM support when operating at 64GT/s  Encoding/Decoding Support: 8b/10b, 128b/130b, 1b/1b  Supports SerDes and non-SerDes architecture  Optional DMA support as plugin module  Support for alternate negotiation protocol  Can operate as an endpoint or root complex  Lane polarity control through register  Lane de-skew supported  Support for L1 states and L0P  Support for SKP OS add/removal and SRIS mode  No equalization support through configuration  Deemphasis negotiation support at 5GT/s  Supports EI inferences in all modes  Supports PTM, OBFF, MSI, MSIX, Power management, and all message formats

Plurko Technologies
All Foundries
All Process Nodes
Peripheral Controller
View Details

EXOSTIV

EXOSTIV is a versatile tool providing extensive capture capabilities for monitoring FPGA internal signals. It's designed to visualize operation in real-time, thus offering immense savings by mitigating FPGA bugs during production and lowering engineering costs. The tool adapts to different prototyping boards and supports a variety of FPGA configurations. A hallmark of EXOSTIV's functionality is its ability to perform at-speed analysis in complex FPGA designs. It features robust probes like the EP16000, which connects to FPGA chip transceivers, supporting significant data rates per transceiver. This setup ensures that engineers can conduct real-world testing and accurate data capture, overcoming the hindrances often encountered with simulation-only methods. The tool boasts a user-friendly interface centered around its Core Inserter and Probe Client software, allowing for efficient IP generation and integration into the target design. By providing comprehensive connectivity options via QSFP28 and supporting multiple platforms, EXOSTIV remains an essential asset for engineers aiming to enhance their FPGA design and validation processes.

Exostiv Labs
AMBA AHB / APB/ AXI, Clock Generator, Processor Core Dependent
View Details

LVDS Interfaces

Silicon Creations crafts highly reliable LVDS interfaces designed to meet diverse application needs, going from bi-directional I/Os to specialized uni-directional configurations. Spanning process compatibilities from 90nm CMOS to advanced 7nm FinFET, these interfaces are a cornerstone for high-speed data communication systems, thriving particularly in video data transmission and chip-to-chip communications. Supporting robust data rates over multiple channels, the LVDS Interfaces guarantee flexible programmability and protocol compatibility with standards such as FPD-Link and Camera-Link. They capitalize on proven PLL and CDR architectures for superior signal integrity and error-free data transfers. Operating efficiently in various technology nodes, they remain highly effective across collaborative chipset environments. The interfaces are fortified with adaptable features like dynamic phase alignment to stabilize data sequences and on-die termination options for superior signal integrity. Their proven record places them as a critical enabler in applications where consistent high-speed data transfer is paramount, demonstrating Silicon Creations’ prowess in delivering industry-leading communication solutions.

Premium Vendor
Silicon Creations
TSMC
12nm, 40nm
Analog Multiplexer, Input/Output Controller, MIPI, Multi-Protocol PHY, Peripheral Controller, Receiver/Transmitter, USB, V-by-One
View Details

Free Running Oscillators

Silicon Creations' Free Running Oscillators provide dependable timing solutions for a range of applications such as watchdog timers and core clock generators in low-power systems. These oscillators, crafted with compactness and efficiency in mind, support a gamut of processes from 65nm to the latest 3nm technologies. These oscillators excel in low power consumption, often requiring less than 30µW during operation. Their robust design ensures they deliver high precision over a temperature range from -40°C to 125°C with supply voltage variabilities factored in. The simplicity in design negates the need for external components, promoting easier integration and reduced overall system complexity. Precise tuning capabilities allow for accuracy levels up to ±1.5% after process trimming, ensuring outstanding performance in volatile environmental conditions. This level of reliability makes them ideal for integration into various consumer electronics, automotive controls, and other precision-demanding applications where space and power constraints are critical.

Premium Vendor
Silicon Creations
TSMC
5nm, 65nm
Clock Generator, Clock Synthesizer, Oscillator
View Details

Ring PLLs

The Ring PLLs offered by Silicon Creations illustrate a versatile clocking solution, well-suited for numerous frequency generation tasks within integrated circuit designs. Known for their general-purpose and specialized applications, these PLLs are crafted to serve a massive array of industries. Their high configurability makes them applicable for diverse synthesis needs, acting as the backbone for multiple clocking strategies across different environments. Silicon Creations' Ring PLLs epitomize high integration with functions tailored for low jitter and precision clock generation, suitable for battery-operated devices and systems demanding high accuracy. Applications span from general clocking to precise Audio Codecs and SerDes configurations requiring dedicated performance metrics. The Ring PLL architecture achieves best-in-class long-term and period jitter performance with both integer and fractional modes available. Designed to support high volumes of frequencies with minimal footprint, these PLLs aid in efficient space allocation within system designs. Their use of silicon-proven architectures and modern validation methodologies assure customers of high reliability and quick integration into existing SoC designs, emphasizing low risk and high reward configurations.

Premium Vendor
Silicon Creations
TSMC
16nm
Clock Generator, Clock Synthesizer, Photonics, PLL
View Details

KL520 AI SoC

The KL520 marks Kneron's foray into the edge AI landscape, offering an impressive combination of size, power efficiency, and performance. Armed with dual ARM Cortex M4 processors, this chip can operate independently or as a co-processor to enable AI functionalities such as smart locks and security monitoring. The KL520 is adept at 3D sensor integration, making it an excellent choice for applications in smart home ecosystems. Its compact design allows devices powered by it to operate on minimal power, such as running on AA batteries for extended periods, showcasing its exceptional power management capabilities.

Kneron
TSMC
65nm
AI Processor, Camera Interface, Clock Generator, CPU, GPU, IoT Processor, MPEG 4, Processor Core Independent, Receiver/Transmitter, Vision Processor
View Details

Expanded Serial Peripheral Interface (xSPI) Slave Controller

Our Expanded Serial Peripheral Interface (JESD251) Slave controller offers high data throughput, low signal count, and limited backward compatibility with legacy Serial Peripheral Interface (SPI) devices. It is used to connect xSPI Master devices in computing, automotive, Internet of Things, embedded systems, and mobile system processors to non-volatile memories, graphics peripherals, networking peripherals, FPGAs, and sensor devices. Features • Compliant with JEDEC standard JESD251 expanded Serial Peripheral Interface (xSPI) for Non-Volatile Memory Devices, Version 1.0. • Supports Single Data Rate (SDR) and Double Data Rate (DDR). • Supports source synchronous clocking. • Supports data transfer rates up to: o 400MT/s (200MHz Clock) o 333MT/s (167MHz Clock) o 266MT/s (133MHz Clock) o 200MT/s (100MHz Clock) • Supports Deep Power Down (DPD) enter and exit commands. • Standard support for eight IO ports, with the possibility to increase IO ports based on system performance requirements. • Optional support for Data Strobe (DS) for timing reference. • Supports 1-bit wide SDR transfer. • Supports Profile 1.0 commands to manage nonvolatile memory devices. • Supports Profile 2.0 commands for reading or writing data for any type of slave device. • Compatible with non-volatile memory arrays such as NOR Flash, NAND Flash, FRAM, and nvSRAM. • Compatible with volatile memory arrays such as SRAM, PSRAM, and DRAM. • Supports register-mapped input/output functions. • Supports programmable function devices such as FPGAs. Application • Consumer Electronics. • Defence & Aerospace. • Virtual Reality. • Augmented Reality. • Medical. • Biometrics (Fingerprints, etc). • Automotive Devices. • Sensor Devices. Deliverables • Verilog Source code. • User Guide. • IP Integration Guide. • Run and Synthesis script. • Encrypted Verification Testbench Environment. • Basic Test-suite.

Plurko Technologies
All Foundries
All Process Nodes
Peripheral Controller
View Details

AHB-Lite Multilayer Switch

Roa Logic's AHB-Lite Multilayer Switch is engineered to provide high-performance, low-latency interconnectivity for AHB-Lite based systems. This switch supports numerous bus masters and slaves, facilitating robust data throughput across the system's architecture. By optimizing data traffic management, it enhances the overall efficiency of electronic devices that require complex data processing capabilities.

Roa Logic BV
AMBA AHB / APB/ AXI, Embedded Security Modules, Input/Output Controller
View Details

CXL V3.0/V2.0 DM/Host/Device Controller

Overview: The Multi-Protocol Accelerator IP is a versatile technology designed to support low latency and high bandwidth accelerators for efficient CPU-to-device and CPU-to-memory communication. It also enables switching for fan-out to connect more devices, memory pooling for increased memory utilization efficiency, and provides memory capacity with support for hot-plug, security enhancements, persistent memory support, and memory error reporting. Key Features:  CXL 3.0 Support: Compliant with CXL spec V3.X/V2.X  PCIe Compatibility: Supports PCIe spec 6.0/5.0  CPI Interface: Support for CPI Interface  AXI Interface: Configurable AXI master, AXI slave  Bus Support: PIPE/FLEX bus, Lane x1,x2,x4,x8,x16  Protocol Support: Gen3, Gen4, Gen5 & Gen6, Fallback Mode  Register Checks: Configuration and Memory Mapped registers  Dual Mode: Supports Dual Mode operation  Transfer Support: HBR/PBR & LOpt Transfers, Standard Cache and Mem Transfers  CXL Support: Can function as both CXL host and device  Data Transfer: Supports Standard IO, 68Byte Flit, and 256Byte Flit Transfers  FlexBus Features: FlexBus Link Features, ARB/MUX, ARB/MUX Bypass  Optimization: Latency Optimization, Credit Return Forcing, Empty Flits (Latency Optimized)  Power Management: Supports Power Management features  Enhancements: CXL IDE, RAS Features, Poison & Viral Handling, MLD/SLD  Testing: Compliance Testing and Error Scenarios support

Plurko Technologies
All Foundries
All Process Nodes
Peripheral Controller
View Details

eSi-Connect

eSi-Connect offers an extensive suite of AMBA-compliant peripheral IPs designed to streamline SoC integration. This suite encompasses versatile memory controllers, standard off-chip interface support, and essential control functions. Its configurability and compatibility with low-level software drivers make it suitable for real-time deployment in complex system architectures, promoting reliable connectivity across various applications.

eSi-RISC
AMBA AHB / APB/ AXI, Gen-Z, I2C, Input/Output Controller, LCD Controller, PCI, Peripheral Controller, Receiver/Transmitter, SATA, Timer/Watchdog, USB
View Details

PDM-to-PCM Converter

The PDM-to-PCM Converter from Archband Labs leads in transforming pulse density modulation signals into pulse code modulation signals. This converter is essential in applications where high fidelity of audio signal processing is vital, including digital audio systems and communication devices. Archband’s solution ensures accurate conversion, preserving the integrity and clarity of the original audio. This converter is crafted to seamlessly integrate with a wide array of systems, offering flexibility and ease-of-use in various configurations. Its robust design supports a wide range of input frequencies, making it adaptable to different signal environments. The PDM-to-PCM Converter also excels in minimizing latency and reducing overhead processing times. It’s engineered for environments where precision and sound quality are paramount, ensuring that audio signals remain crisp and undistorted during conversion processes.

Archband Labs
AMBA AHB / APB/ AXI, Audio Interfaces, Coder/Decoder, CSC, GPU, Input/Output Controller, Receiver/Transmitter, VC-2 HQ
View Details

Serial FPDP (sFPDP) IP Core

iWave Global delivers the Serial FPDP (sFPDP) solution, a high-bandwidth, low-latency serial communication protocol widely deployed in high-performance computing systems. This technology is optimized for applications that require rapid data transport, such as radar and high-definition video processing, making it a vital tool in industrial and defense sectors. By supporting high throughput rates, the Serial FPDP ensures timely and reliable data transmission, crucial for systems where time sensitivity and data integrity are paramount. The solution is particularly designed to address real-time data operations, ensuring that data handling meets rigorous industry standards. With its robust design, the Serial FPDP accommodates various network topologies, allowing for the flexible deployment of communication systems. This flexibility and performance make it highly applicable in environments where system designers demand unobstructed high-speed data transfer capabilities.

iWave Global
Peripheral Controller
View Details

Apodis OTN Processors

The Apodis family of Optical Transport Network processors adheres to ITU-T standards, offering a comprehensive suite for signal termination, processing, and multiplexing. Designed to handle both SONET/SDH and Ethernet client services, these processors map signals to Optical Transport Network (OTN), empowering versatile any-port, any-service configurations. Apodis processors are notable for their capacity to support up to 16 client ports and four 10G OTN line ports, delivering bandwidth scalability up to 40G, crucial for wireless backhaul and fronthaul deployments. With a robust, non-blocking OTN switching fabric, Apodis facilitates seamless client-to-line and line-to-line connections while optimally managing network bandwidth. This adaptability makes the Apodis processors an ideal choice for next-generation access networks and optical infrastructures.

Tera-Pass
AMBA AHB / APB/ AXI, HBM, NAND Flash, PCMCIA, Receiver/Transmitter, SAS
View Details

AHB-Lite Timer

Roa Logic's AHB-Lite Timer is a timer module that adheres to the RISC-V Privileged 1.9.1 specification, designed for use in RISC-V compliant systems. This module offers reliable timing functions essential for task scheduling and precise time control in embedded applications, delivering dependable performance required in various electronic applications.

Roa Logic BV
AMBA AHB / APB/ AXI, Cryptography Software Library, Input/Output Controller, Timer/Watchdog
View Details

GenAI v1-Q

The GenAI v1-Q from RaiderChip brings forth a specialized focus on quantized AI operations, reducing memory requirements significantly while maintaining impressive precision and speed. This innovative accelerator is engineered to execute large language models in real-time, utilizing advanced quantization techniques such as Q4_K and Q5_K, thereby enhancing AI inference efficiency especially in memory-constrained environments. By offering a 276% boost in processing speed alongside a 75% reduction in memory footprint, GenAI v1-Q empowers developers to integrate advanced AI capabilities into smaller, less powerful devices without sacrificing operational quality. This makes it particularly advantageous for applications demanding swift response times and low latency, including real-time translation, autonomous navigation, and responsive customer interactions. The GenAI v1-Q diverges from conventional AI solutions by functioning independently, free from external network or cloud auxiliaries. Its design harmonizes superior computational performance with scalability, allowing seamless adaptation across variegated hardware platforms including FPGAs and ASIC implementations. This flexibility is crucial for tailoring performance parameters like model scale, inference velocity, and power consumption to meet exacting user specifications effectively. RaiderChip's GenAI v1-Q addresses crucial AI industry needs with its ability to manage multiple transformer-based models and confidential data securely on-premises. This opens doors for its application in sensitive areas such as defense, healthcare, and financial services, where confidentiality and rapid processing are paramount. With GenAI v1-Q, RaiderChip underscores its commitment to advancing AI solutions that are both environmentally sustainable and economically viable.

RaiderChip
TSMC
65nm
AI Processor, AMBA AHB / APB/ AXI, Audio Controller, Coprocessor, CPU, Ethernet, Microcontroller, Multiprocessor / DSP, PowerPC, Processor Core Dependent, Processor Cores
View Details

GH310

The GH310 offers high-performance 2D sprite graphics capabilities with an emphasis on pixel throughput and minimal gate count. This makes it an excellent choice for applications that require rapid sprite rendering and high pixel density, such as user interfaces and gaming devices. Its optimized architecture supports efficient sprite operations, making it a versatile choice for embedded systems.

TAKUMI Corporation
2D / 3D, GPU
View Details

KL530 AI SoC

The KL530 represents a significant advancement in AI chip technology with a new NPU architecture optimized for both INT4 precision and transformer networks. This SOC is engineered to provide high processing efficiency and low power consumption, making it suitable for AIoT applications and other innovative scenarios. It features an ARM Cortex M4 CPU designed for low-power operation and offers a robust computational power of up to 1 TOPS. The chip's ISP enhances image quality, while its codec ensures efficient multimedia compression. Notably, the chip's cold start time is under 500 ms with an average power draw of less than 500 mW, establishing it as a leader in energy efficiency.

Kneron
TSMC
28nm SLP
AI Processor, Camera Interface, Clock Generator, CPU, CSC, GPU, IoT Processor, Peripheral Controller, Vision Processor
View Details

ARINC 818-3 IP Core

The ARINC 818-3 IP Core from iWave Global represents an advancement in avionics video interface technology, designed for high-speed and high-fidelity video data transmission. This IP core addresses the needs of modern aerospace systems that require robust video communication links both for military and commercial use. It supports a wide array of enhancements over previous generations, including increased bandwidth and improved signal integrity. This ensures that the ARINC 818-3 IP Core can handle the demands of next-generation avionic systems seamlessly, supporting advanced video processing and display systems. The core's design prioritizes modularity and scalability, allowing for easy integration and expansion to meet evolving system requirements. It is positioned as an essential tool for aviation applications demanding high reliability and accuracy in video data handling and display solutions, making it indispensable for new and retrofitted aerospace projects.

iWave Global
AMBA AHB / APB/ AXI, Coder/Decoder, Peripheral Controller
View Details

H.264 FPGA Encoder and CODEC Micro Footprint Cores

The H.264 FPGA Encoder and CODEC Micro Footprint Cores from A2e Technologies is a highly customizable IP core designed specifically for FPGAs. This core is notable for its small size and high speed, capable of supporting 1080p60 H.264 Baseline video with a single core. Featuring exceptionally low latency, as little as 1ms at 1080p30, it offers a customizable solution for various video resolutions and pixel depths. These capabilities make it a competitive choice for applications requiring high-performance video compression with minimal footprint. Designed to be ITAR compliant and licensable, the H.264 core can be tailored to meet specific requirements, offering flexibility in video applications. This product is especially suitable for industries where space and performance are critical, such as defense and industrial controls. The core can work efficiently across a range of resolutions and color depths, providing the potential for integration into a wide array of devices and systems. The company's expertise ensures that this H.264 core is not only versatile but also comes with the option of a low-cost evaluation license, allowing potential users to explore its capabilities before committing fully. With A2e's strong support and integration services, customers have assurance that even complex design requirements can be met with experienced guidance.

A2e Technologies
AI Processor, AMBA AHB / APB/ AXI, Arbiter, Audio Controller, H.264, H.265, HDMI, Multiprocessor / DSP, Other, TICO, USB, Wireless Processor
View Details

PRBS Generator, Checker, and Error Counter

The PRBS Generator, Checker, and Error Counter is a comprehensive solution within Kamaten's IP portfolio, designed to efficiently monitor and analyze serial data streams. It features an all-in-one generator, a checker for error detection, and an error counter, supporting PRBS orders 7, 15, and 31. This IP is ideal for high-speed data applications, equipped with differential CMOS data and clock inputs and outputs, offering a compact and power-efficient design with a power down mode for energy savings. The PRBS Generator, Checker, and Error Counter is designed for robustness and reliability in various environments, operating effectively at a high data rate of up to 36 Gbps. It's built on the well-established TSMC 28HPC process node, ensuring compatibility with modern semiconductor processes. The design also incorporates a power management feature that consumes 80 mA at a 32 Gbps rate, which scales with different data rates. Given its scalability and compact form factor, the PRBS solution is well-suited for integration into larger systems requiring precise data stream monitoring and error checking. This makes it an attractive choice for engineers looking to implement reliable high-speed serial data analysis in their projects.

Kamaten Technology Incorporated
TSMC
28nm
Receiver/Transmitter
View Details

HOTLink II Product Suite

The HOTLink II Product Suite constitutes a range of resources specifically tailored for systems utilizing HOTLink IIâ„¢ technology. This suite is engineered to manage high-speed video and data communication in environments where reliability and precision are paramount. It is ideal for applications in aerospace where maintaining high data integrity is critical. The suite provides robust solutions for both the development and operational stages, enhancing system performance. With its extensive support for different phases of product lifecycle management, the HOTLink II suite ensures that products meet the high standards required for mission-critical military and industrial applications.

Great River Technology, Inc.
15 Categories
View Details

Analog Glue

Silicon Creations' Analog Glue solutions provide essential analog functionalities to complete custom SoC designs seamlessly. These functional blocks, which constitute buffer and bandgap reference circuits, are vital for seamless on-chip clock distribution and ensure low-jitter operations. Analog Glue includes crucial components such as power-on reset (POR) generators and bridging circuits to support various protocols and interfaces within SoCs. These supplementary macros are crafted to complement existing PLLs and facilities like SerDes, securing reliable signal transmission under varied operating circumstances. Serving as the unsung heroes of chip integration, these Analog Glue functions mitigate the inevitable risks of complex SoC designs, supporting efficient design flows and effective population of chip real estate. Thus, by emphasizing critical system coherency, they enhance overall component functionality, providing a stable infrastructure upon which additional system insights can be leveraged.

Premium Vendor
Silicon Creations
TSMC
90nm, 180nm
Analog Multiplexer, Analog Subsystems, Clock Generator, Clock Synthesizer, Power Management, Sensor
View Details

AXI4 DMA Controller

The AXI4 DMA Controller from Digital Blocks revolutionizes data management in System-on-Chip architectures through high-performance Direct Memory Access capabilities. Supporting a span of 1 to 16 channels, it handles data transfers between memory and peripherals with agility, ideal for both small and large datasets. Designed for high throughput, it includes a multi-channel architecture that can expand from 32 to up to 256 channels, demonstrating exceptional scalability for future data demands. Each channel within the DMA Controller operates independently with dedicated Read and Write Controllers, ensuring minimal overhead during transfers. It facilitates complex data flow configurations including scatter-gather linked-list data controls and comprehensive support for different burst modes within the AXI3 and AXI4 protocols. Its design incorporates advanced features that users can selectively enable to optimize silicon resource usage and cost efficiency. Additionally, it accommodates complex AXI4-Stream to memory-mapped interface transfers, making it versatile for a variety of applications, from high-speed data environments to embedded systems requiring optimized memory access and control.

Digital Blocks
AMBA AHB / APB/ AXI, DMA Controller, SD, SDRAM Controller, SRAM Controller, USB
View Details

Flexibilis Ethernet Switch (FES)

The Flexibilis Ethernet Switch (FES) is an advanced Layer 2 Ethernet switch IP tailored for high data throughput and time-sensitive applications. It features a multi-gigabit forwarding engine that can handle 10/100/1000 Mbps speeds across its ports. Designed for integration into FPGA environments, FES serves exceptionally well in scenarios demanding dynamic traffic management and precise time synchronization. FES supports advanced clock synchronization via the IEEE 1588 protocol, ensuring sub-microsecond accuracy, making it suitable for high-precision applications in sectors like power utilities and telecommunications. The switch combines this with packet prioritization and VLAN tagging functionalities, allowing for efficient network traffic segmentation and Quality of Service (QoS) management. The switch's versatile design includes support for various physical interfaces, such as MII/GMII and optional SGMII/RGMII adapters, making it suitable for deployment in varied network setups. FES offers a robust framework for developing comprehensive network solutions that require high availability and precise timing control, addressing the complex needs of modern industrial and utility applications.

Flexibilis Oy
Ethernet, IEEE1588, Input/Output Controller, Receiver/Transmitter
View Details

Ultra-Low Latency 10G Ethernet MAC

The Ultra-Low Latency 10G Ethernet MAC from Chevin Technology is designed to deliver exceptional speed and efficiency for cutting-edge FPGA applications. Its primary focus is on reducing latency to the bare minimum while maintaining a high data throughput. This Ethernet MAC is universally compatible with Intel and AMD FPGA platforms, offering seamless adaptation to various projects. This solution is especially advantageous for environments where near-instantaneous data transmission is a necessity. Ideal for applications in high-frequency trading, telecommunications, and advanced scientific instrumentation, the Ultra-Low Latency 10G Ethernet MAC ensures that data integrity is preserved even at high speeds. Chevin Technology's meticulous in-house testing and development processes guarantee that this IP core meets stringent quality and performance standards. It offers a scalable, all-hardware architecture that slashes the usual implementation time, allowing more resources to be dedicated to expanding functionality and securing additional data pathways.

Chevin Technology
AMBA AHB / APB/ AXI, Ethernet, PLL, Receiver/Transmitter, SAS, SATA, SDRAM Controller
View Details

Spiking Neural Processor T1 - Ultra-lowpower Microcontroller for Sensing

The Spiking Neural Processor T1 is a neuromorphic microcontroller engineered for always-on sensor applications. It utilizes a spiking neural network engine alongside a RISC-V processor core, creating an ultra-efficient single-chip solution for real-time data processing. With its optimized power consumption, it enables next-generation artificial intelligence and signal processing in small, battery-operated devices. The T1 delivers advanced applications capabilities within a minimal power envelope, making it suitable for use in devices where power and latency are critical factors. The T1 includes a compact, multi-core RISC-V CPU paired with substantial on-chip SRAM, enabling fast and responsive processing of sensor data. By employing the remarkable abilities of spiking neural networks for pattern recognition, it ensures superior power performance on signal-processing tasks. The versatile processor can execute both SNNs and conventional processing tasks, supported by various standard interfaces, thus offering maximum flexibility to developers looking to implement AI features across different devices. Developers can quickly prototype and deploy solutions using the T1's development kit, which includes software for easy integration into existing systems and tools for accurate performance profiling. The development kit supports a variety of sensor interfaces, streamlining the creation of sophisticated sensor applications without the need for extensive power or size trade-offs.

Innatera Nanosystems
AI Processor, Coprocessor, CPU, DSP Core, Input/Output Controller, IoT Processor, Microcontroller, Multiprocessor / DSP, Standard cell, Vision Processor, Wireless Processor
View Details

pPLL03F-GF22FDX

The pPLL03F-GF22FDX is a sophisticated all-digital fractional-N PLL optimized for performance computing applications using GlobalFoundries 22FDX technology. This PLL is engineered for environments with rigorous timing requirements, offering low jitter performance of less than 10 picoseconds RMS at operational frequencies as high as 4GHz. Compact and power-efficient, it typically occupies less than 0.01 square millimeters and consumes under 5 milliwatts of power. The architecture of the pPLL03F-GF22FDX is built on Perceptia's advanced second-generation digital PLL technology, which provides consistent performance across various processes, regardless of PVT conditions. This design is particularly well-suited to applications where multiple clock domains are present, each controlled by its dedicated PLL, thanks to integrated power supply regulation that simplifies system design and power sharing. Integration into complex SoC designs is seamless, supported by comprehensive deliverables that include models and views necessary for modern backend design flows. The adaptable nature of this PLL allows it to be configured as either an integer-N or fractional-N PLL, offering flexibility in aligning system-level input and output clock frequencies. Clients are also offered extensive customization and integration support, ensuring optimal fit and functionality in diverse applications.

Perceptia Devices Australia
GLOBALFOUNDRIES, Samsung, TSMC
16nm, 40nm, 45nm
AMBA AHB / APB/ AXI, Clock Generator, Clock Synthesizer, Ethernet, Peripheral Controller, PLL
View Details

C100 IoT Control and Interconnection Chip

The Chipchain C100 is a pioneering solution in IoT applications, providing a highly integrated single-chip design that focuses on low power consumption without compromising performance. Its design incorporates a powerful 32-bit RISC-V CPU which can reach speeds up to 1.5GHz. This processing power ensures efficient and capable computing for diverse IoT applications. This chip stands out with its comprehensive integrated features including embedded RAM and ROM, making it efficient in both processing and computing tasks. Additionally, the C100 comes with integrated Wi-Fi and multiple interfaces for transmission, broadening its application potential significantly. Other notable features of the C100 include an ADC, LDO, and a temperature sensor, enabling it to handle a wide array of IoT tasks more seamlessly. With considerations for security and stability, the Chipchain C100 facilitates easier and faster development in IoT applications, proving itself as a versatile component in smart devices like security systems, home automation products, and wearable technology.

Shenzhen Chipchain Technologies Co., Ltd.
TSMC
7nm LPP, 16nm, 28nm
20 Categories
View Details

RAIV General Purpose GPU

RAIV represents Siliconarts' General Purpose-GPU (GPGPU) offering, engineered to accelerate data processing across diverse industries. This versatile GPU IP is essential in sectors engaged in high-performance computing tasks, such as autonomous driving, IoT, and sophisticated data centers. With RAIV, Siliconarts taps into the potential of the fourth industrial revolution, enabling rapid computation and seamless data management. The RAIV architecture is poised to deliver unmatched efficiency in high-demand scenarios, supporting massive parallel processing and intricate calculations. It provides an adaptable framework that caters to the needs of modern computing, ensuring balanced workloads and optimized performance. Whether used for VR/AR applications or supporting the back-end infrastructure of data-intensive operations, RAIV is designed to meet and exceed industry expectations. RAIV’s flexible design can be tailored to enhance a broad spectrum of applications, promising accelerated innovation in sectors dependent on AI and machine learning. This GPGPU IP not only underscores Siliconarts' commitment to technological advancement but also highlights its capability to craft solutions that drive forward computational boundaries.

Siliconarts, Inc.
AI Processor, Building Blocks, CPU, GPU, Multiprocessor / DSP, Processor Core Dependent, Processor Core Independent, Processor Cores, Vision Processor, Wireless Processor
View Details

KL720 AI SoC

The KL720 AI SoC is designed for optimal performance-to-power ratios, achieving 0.9 TOPS per watt. This makes it one of the most efficient chips available for edge AI applications. The SOC is crafted to meet high processing demands, suitable for high-end devices including smart TVs, AI glasses, and advanced cameras. With an ARM Cortex M4 CPU, it enables superior 4K imaging, full HD video processing, and advanced 3D sensing capabilities. The KL720 also supports natural language processing (NLP), making it ideal for emerging AI interfaces such as AI assistants and gaming gesture controls.

Kneron
TSMC
16nm FFC/FF+
2D / 3D, AI Processor, Audio Interfaces, AV1, Camera Interface, CPU, GPU, Image Conversion, TICO, Vision Processor
View Details

Ethernet Real-Time Publish-Subscribe (RTPS) IP Core

The Ethernet Real-Time Publish-Subscribe (RTPS) IP Core offers a thorough hardware implementation of the Ethernet RTPS protocol, which is utilized for real-time communication in Ethernet networks. Its architecture supports efficient and deterministic data transfer, crucial in environments that demand reliable and high-speed data exchanges. The IP core is particularly beneficial within applications that require consistent communication and reduced latency, fostering robust network infrastructures.

New Wave Design
AMBA AHB / APB/ AXI, Ethernet, Input/Output Controller, PCI
View Details

ISELED Technology

ISELED represents a breakthrough in automotive lighting with its integration of RGB LED control and communication in a single, smart LED component. This innovative system simplifies lighting design by enabling digital color value input for immediate autonomous color mixing and temperature adjustments, reducing both complexity and cost in vehicles. ISELED operates by implementing a manufacturer-calibrated RGB LED setup suitable for diverse applications, from ambient to functional lighting systems within vehicles. Utilizing a bidirectional communication protocol, ISELED manages up to 4,079 addressable LEDs, offering easy installation and high precision control over individual light characteristics, ideal for creating dynamic and at times synchronized lighting across the automotive interior. This technology ultimately enhances network resilience with features like DC/DC conversion from a standard 12V battery, consistent communication despite power variations, and compatibility with software-free Ethernet bridge systems for streamlined connectivity. This strong focus on reducing production and operational costs, while simultaneously broadening lighting functionality, positions ISELED as a modern solution for smart automotive lighting architectures.

INOVA Semiconductors GmbH
Audio Interfaces, LIN, Multiprocessor / DSP, Other, Power Management, Receiver/Transmitter, Safe Ethernet, Sensor, Temperature Sensor
View Details

Mixed-Signal CODEC

The Mixed-Signal CODEC offered by Archband Labs integrates advanced analog and digital audio processing to deliver superior sound quality. Designed for a variety of applications such as portable audio devices, automotive systems, and entertainment systems, this CODEC provides efficiency and high performance. With cutting-edge technologies, it handles complex signal conversions with minimal power consumption. This CODEC supports numerous interface standards, making it a versatile component in numerous audio architectures. It's engineered to offer precise sound reproduction and maintains audio fidelity across all use cases. The integrated components within the CODEC streamline design processes and reduce the complexity of audio system implementations. Furthermore, the Mixed-Signal CODEC incorporates features that support high-resolution audio, ensuring compatibility with high-definition sound systems. It's an ideal choice for engineers looking for a reliable and comprehensive audio processing solution.

Archband Labs
ADPCM, Audio Controller, Audio Interfaces, Audio Processor, Coder/Decoder, DMA Controller, GPU, Peripheral Controller, Receiver/Transmitter, Timer/Watchdog, USB
View Details
Load more
Sign up to Silicon Hub to buy and sell semiconductor IP

Sign Up for Silicon Hub

Join the world's most advanced semiconductor IP marketplace!

It's free, and you'll get all the tools you need to discover IP, meet vendors and manage your IP workflow!

No credit card or payment details required.

Sign up to Silicon Hub to buy and sell semiconductor IP

Welcome to Silicon Hub

Join the world's most advanced AI-powered semiconductor IP marketplace!

It's free, and you'll get all the tools you need to advertise and discover semiconductor IP, keep up-to-date with the latest semiconductor news and more!

Plus we'll send you our free weekly report on the semiconductor industry and the latest IP launches!

Switch to a Silicon Hub buyer account to buy semiconductor IP

Switch to a Buyer Account

To evaluate IP you need to be logged into a buyer profile. Select a profile below, or create a new buyer profile for your company.

Add new company

Switch to a Silicon Hub buyer account to buy semiconductor IP

Create a Buyer Account

To evaluate IP you need to be logged into a buyer profile. It's free to create a buyer profile for your company.

Chatting with Volt