All IPs > Memory & Logic Library
The Memory & Logic Library category in our semiconductor IP catalog offers a comprehensive range of intellectual property that is essential for creating efficient and high-performance semiconductor solutions. This category is pivotal for designers who require reliable and optimized components to be integrated into a wide array of electronic products.
Key offerings within this category include Embedded Memories, I/O Libraries, and Standard Cells, each playing a critical role in the functionality of integrated circuits (ICs). Embedded Memories are vital for storing data within semiconductor chips, ranging from simple storage solutions to complex memory architectures that support high-speed operations. These are used in everything from microcontrollers for consumer electronics to high-end processors for enterprise-grade applications.
I/O Libraries, on the other hand, provide the necessary interface between the semiconductor device and the outside world. They encompass a wide variety of input/output configurations and technologies, ensuring efficient communication and data transfer is maintained across the chip's interfaces.
Finally, Standard Cells form the building blocks of digital circuits. They provide pre-designed, pre-verified logic functions that simplify the design process, increase reliability, and reduce time to market. Standard cells are integral in the design of ASICs (Application-Specific Integrated Circuits) and other custom logic devices. Our Memory & Logic Library category thus enables semiconductor engineers to access a diverse set of IPs crucial for modern electronics design and innovation.
xcore.ai stands as a cutting-edge processor that brings sophisticated intelligence, connectivity, and computation capabilities to a broad range of smart products. Designed to deliver optimal performance for applications in consumer electronics, industrial control, and automotive markets, it efficiently handles complex processing tasks with low power consumption and rapid execution speeds. This processor facilitates seamless integration of AI capabilities, enhancing voice processing, audio interfacing, and real-time analytics functions. It supports various interfacing options to accommodate different peripheral and sensor connections, thus providing flexibility in design and deployment across multiple platforms. Moreover, the xcore.ai ensures robust performance in environments requiring precise control and high data throughput. Its compatibility with a wide array of software tools and libraries enables developers to swiftly create and iterate applications, reducing the time-to-market and optimizing the design workflows.
The 16-bit Sigma-Delta ADC operates with exceptional precision and versatility, leveraging 55nm SMIC CMOS technology. It offers programmable gain ranging from 0 to 50dB, catering to a variety of audio applications. The ADC features four fully differential inputs and integrated microphone biasing options to enhance its applicability in mono audio systems. This ADC supports a conversion rate of 16KSPS and is equipped with a digital serial interface, enabling seamless integration with diverse digital systems using PDM, I2S, or TDM protocols. It's designed to minimize power consumption while maintaining a strong signal-to-noise ratio of 90dB. The ADC is optimized for audio applications and its robust design includes power-down modes that reduce current to less than 1uA, ensuring efficiency without sacrificing performance.
The NVMe Host Controller from iWave Global offers an advanced solution for managing NVMe drive interfaces in computing systems. This controller is designed to facilitate the high-speed data exchange that NVMe drives demand, streamlining operations across data-centric applications. Engineered for scalability and performance, the NVMe Host Controller supports high data throughput, ensuring quick access and transfer of data between storage devices and host systems. Its design caters to the demands of modern computational environments where rapid data retrieval and storage are critical. The controller is integral in systems requiring high-performance storage solutions, and its support for multiple interfaces underscores its adaptability and broad applicability in data-intensive industries such as enterprise storage and high-performance computing.
The A25 processor model is a versatile CPU suitable for a variety of embedded applications. With its 5-stage pipeline and 32/64-bit architecture, it delivers high performance even with a low gate count, which translates to efficiency in power-sensitive environments. The A25 is equipped with Andes Custom Extensions that enable tailored instruction sets for specific application accelerations. Supporting robust high-frequency operations, this model shines in its ability to manage data prefetching and cache coherence in multicore setups, making it adept at handling complex processing tasks within constrained spaces.
NRAM, or Nanotube-based Random Access Memory, represents a major breakthrough in memory technology by Nantero. It leverages the unique properties of carbon nanotubes, providing an innovative alternative to traditional memory technologies like DRAM and NAND. This technology is renowned for offering extraordinary speed, capable of matching DRAM speeds and being up to 100 times faster than NAND. What's particularly significant about NRAM is its nonvolatile nature, which means it retains data even when power is switched off, leading to devices with 'instant on' capabilities. Additionally, NRAM stands out due to its energy efficiency, often consuming no power in standby mode and requiring minimal energy during operation. This positions it perfectly to meet the energy-saving demands of green data centers, contributing to substantial reductions in electricity usage and carbon footprint. Furthermore, it offers a simple and cost-effective structural design that can be scaled down to below 5 nm, supporting multilayer and 3D configurations, which makes it versatile and ready for future memory scaling needs. NRAM’s robust design also ensures high endurance and environmental resistance, withstanding extreme conditions like heat, cold, and radiation, making it suitable for aerospace and other challenging applications. Coupled with its RadHard capabilities for secure data retention under adverse conditions, NRAM is designed to support critical infrastructure systems. Its integration does not necessitate specialized equipment, allowing for seamless manufacturing within existing CMOS fabs.
Dolphin Technology provides an extensive range of standard cell libraries that are critical for any SoC design project. These libraries include over 5,000 fully customizable cells, each precisely crafted to optimize speed, power, density, and routability. The standard cells are verified in silicon and designed for use across various process technologies, making them an ideal choice for a wide range of applications. The standard cell libraries support various process nodes such as 6-track, 7-track, and up to 14-track configurations, suitable for everything from high-performance to ultra-high density applications. Dolphin Technology’s standard cell IP offerings include Multi-VT (SVT, HVT, LVT) and multi-channel options, enabling flexibility in design to accommodate the specific needs of semiconductor projects. These cell libraries are tailored to support high-performance computing, provide efficiency in wafer yield, and ensure optimal SoC pricing. This high degree of customization, coupled with a focus on power and density, offers excellent options for semiconductor professionals aiming to create high-performance designs efficiently and cost-effectively.
The YouDDR technology offered by Brite Semiconductor encompasses not just DDR controllers and PHY, but also I/O features and specialized software designed for tuning and testing. This forms a comprehensive subsystem delivering efficient data handling with robust performance for high-speed applications.<br><br>Designed with versatility, YouDDR is adaptable to cater to varied DDR technology demands, ensuring seamless integration in diverse electronic environments. Whether in consumer electronics or high-speed computing systems, it enables precise control and optimal function.<br><br>With additional tuning and testing software, the YouDDR system is engineered to maintain performance integrity across extensive operational ranges. It represents a complete solution, addressing every aspect from control to interface and verification.
ChipJuice is a powerful and user-friendly tool designed for the reverse engineering of integrated circuits (ICs). This tool is particularly beneficial for digital forensics activities, offering capabilities such as backdoor research, supply chain assessment, and comprehensive hardware architecture analysis. ChipJuice aids in technology intelligence by performing security assessments, investigating digital IP infringement, and analyzing pirate devices. It also supports the recovery of obsolete devices and is instrumental in semiconductor education. The tool is crafted to be intuitive, combining a robust set of features that cater to chip explorers of all kinds. It supports various chip types regardless of their size, technology node, or material composition like aluminum and copper. With a focus on versatility, ChipJuice can handle microcontrollers, microprocessors, FPGAs, and SoCs efficiently. Its embedded feature for Automated Standard Cell Research helps to identify and catalog standard cells for use in subsequent chip evaluations, making it a valuable asset for lab environments and forensic analyses. ChipJuice's high-performance algorithms allow for quick and efficient processing, recovering a chip's internal architecture in the form of netlists and HDL files. The tool provides a physical netlist where nodes are localized on the chip, enabling rapid signal tracing and annotation. It operates seamlessly with just the electronic images of a chip's digital core, making it an easy-to-use yet powerful solution for exploring and understanding ICs' complexities.
The SiFive Essential family stands out as a versatile solution, delivering a wide range of pre-defined embedded CPU cores suitable for a variety of industrial applications. Whether you're designing for minimal area and power consumption or maximum feature capabilities, Essential offers configurations that adapt to diverse industrial needs. From compact microcontrollers to rich OS-compatible CPUs, Essential supports 32-bit and 64-bit pipelines, ensuring an optimal balance between performance and efficiency. This flexibility is enhanced by advanced tracing and debugging features, robust SoC security through WorldGuard support, and a broad array of interface options for seamless SoC integration. These comprehensive support mechanisms assure developers of maximum adaptability and accelerated integration within their designs, whether in IoT devices or control plane applications. SiFive Essential’s power efficiency and adaptability make it particularly suited for deploying customizable solutions in embedded applications. Whether the requirement is for intense computational capacity or low-power, battery-efficient tasks, Essential cores help accelerate time-to-market while offering robust performance in compact form factors, emphasizing scalable and secure solutions for a variety of applications.
Dolphin Technology offers a comprehensive range of memory IP products, catering to diverse requirements in semiconductor design. These products include a variety of memory compilers, specialty memory, and robust memory test and repair solutions such as Memory BIST. Designed to meet the demands of contemporary low-power and high-density applications, these IPs are built to work across a broad spectrum of process technologies. Advanced power management features, like light and deep sleep modes and dual rails, enable these products to tackle even the toughest low-leakage challenges. What sets these products apart is their flexibility and adaptability, evident in the support for different memory types and process nodes. Dolphin Technology’s memory IPs benefit from seasoned design teams that have proven their mettle in silicon across several generations. Thus, these IPs are not only versatile but also reliable in serving a wide variety of industry needs for technology firms worldwide. Clients can expect memory solutions that are fine-tuned for both power efficiency and performance. Additional capabilities such as power gating cater to ultra-low power devices while achieving a high level of device integration and compatibility. The specialized focus on low noise and rapid cycle times makes these memory solutions highly effective for performance-driven applications. These features collectively make Dolphin Technology’s memory IP an invaluable asset for semiconductor designers striving for innovation and excellence.
The AndeShape Platforms are designed to streamline system development by providing a diverse suite of IP solutions for SoC architecture. These platforms encompass a variety of product categories, including the AE210P for microcontroller applications, AE300 and AE350 AXI fabric packages for scalable SoCs, and AE250 AHB platform IP. These solutions facilitate efficient system integration with Andes processors. Furthermore, AndeShape offers a sophisticated range of development platforms and debugging tools, such as ADP-XC7K160/410, which reinforce the system design and verification processes, providing a comprehensive environment for the innovative realization of IoT and other embedded applications.
The General Purpose Accelerator (Aptos) from Ascenium stands out as a redefining force in the realm of CPU technology. It seeks to overcome the limitations of traditional CPUs by providing a solution that tackles both performance inefficiencies and high energy demands. Leveraging compiler-driven architecture, this accelerator introduces a novel approach by simplifying CPU operations, making it exceptionally suited for handling generic code. Notably, it offers compatibility with the LLVM compiler, ensuring a wide range of applications can be adapted seamlessly without rewrites. The Aptos excels in performance by embracing a highly parallel yet simplified CPU framework that significantly boosts efficiency, reportedly achieving up to four times the performance of cutting-edge CPUs. Such advancements cater not only to performance-oriented tasks but also substantially mitigate energy consumption, providing a dual benefit of cost efficiency and reduced environmental impact. This makes Aptos a valuable asset for data centers seeking to optimize their energy footprint while enhancing computational capabilities. Additionally, the Aptos architecture supports efficient code execution by resolving tasks predominantly at compile-time, allowing the processor to handle workloads more effectively. This allows standard high-level language software to run with improved efficiency across diverse computing environments, aligning with an overarching goal of greener computing. By maximizing operational efficiency and reducing carbon emissions, Aptos propels Ascenium into a leading position in the sustainable and high-performance computing sector.
TwinBit Gen-1 is an embedded non-volatile memory solution designed for 180nm to 55nm CMOS logic processes. Known for its high endurance, TwinBit Gen-1 supports more than 10,000 program and erase cycles, making it exceptionally durable. This solution is easily integrated into advanced nodes without the need for additional masks or process alterations, and it spans a memory size range from 64 bits to 512K bits, suitable for applications like analog trimming and security key storage. TwinBit Gen-1 offers benefits such as minimal silicon area requirements and low power operations, making it perfect for automotive applications given its compliance with AEC-Q100 standards. Its built-in test circuits facilitate stress-free test environments, ensuring reliable performance across various operational scenarios.
The AHB-Lite Memory module is a flexible, parameterized soft IP that implements on-chip memory accessible by an AHB-Lite Master. It is tailored to support a wide range of memory configurations, making it a scalable solution for various embedded applications. The module is developed with high configurability to meet specific design needs, including different data widths and memory sizes. This memory IP ensures high-speed, low-latency access for AHB-Lite systems, contributing to efficient data handling within SoC architectures. The design supports both read and write operations and integrates seamlessly into diverse electronic systems. Implementing AHB-Lite Memory provides the necessary infrastructure for robust and reliable memory operations, crucial for maintaining high system performance.
The Spiking Neural Processor T1 represents a significant leap in neuromorphic microcontroller technology, blending ultra-low power consumption with advanced spiking neural network capabilities. This microcontroller stands as a complete solution for processing sensor data with unprecedented efficiency and speed, bringing intelligence directly to the sensor. Incorporating a nimble RISC-V processor core alongside its spiking neural network engine, the T1 is engineered for seamless integration into next-generation AI applications. Within a tightly constrained power envelope, it excels at signal processing tasks that are crucial for battery-operated, latency-sensitive devices. The T1's architecture allows for fast, sub-1mW pattern recognition, enabling real-time sensory data processing akin to the human brain's capabilities. This microcontroller facilitates complex event-driven processing with remarkable efficiency, reducing the burden on application processors by offloading sensor data processing tasks. It is an enabler of groundbreaking developments in wearables, ambient intelligence, and smart devices, particularly in scenarios where power and response time are critical constraints. With flexible interface support, including QSPI, I2C, UART, and more, the T1 is designed for easy integration into existing systems. Its compact package size further enhances its suitability for embedded applications, while its comprehensive Evaluation Kit (EVK) supports developers in accelerating application development. The EVK provides extensive performance profiling tools, enabling the exploration of the T1's multifaceted processing capabilities. Overall, the T1 stands at the forefront of bringing brain-inspired intelligence to the edge, setting a new standard for smart sensor technology.
Certus Semiconductor's Digital I/O solutions are engineered to meet various GPIO/ODIO standards. These versatile libraries offer support for standards such as I2C, I3C, SPI, JEDEC CMOS, and more. Designed to withstand extreme conditions, these I/Os incorporate features like ultra-low power consumption, multiple drive strengths, and high levels of ESD protection. These attributes make them suitable for applications requiring resilient performance under harsh conditions. Certus Semiconductor’s offerings also include a variety of advanced features like RGMII-compliant IO cells, offering flexibility for different project needs.
RegSpec is a cutting-edge tool that streamlines the generation of control and status register code, catering to the needs of IP designers by overcoming the limitations of traditional CSR generators. It supports complex synchronization and hardware interactions, allowing designers to automate intricate processes like pulse generation and serialization. Furthermore, it enhances verification by producing UVM-compatible code. This tool's flexibility shines as it can import and export in industry-standard formats such as SystemRDL and IP-XACT, interacting seamlessly with other CSR tools. RegSpec not only generates verilog RTL and SystemC header files but also provides comprehensive documentation across multiple formats including HTML, PDF, and Word. By transforming complex designs into streamlined processes, RegSpec plays a vital role in elevating design efficiency and precision. For system design, it creates standard C/C++ headers that facilitate firmware access, accompanied by SystemC models for advanced system modeling. Such comprehensive functionality ensures that RegSpec is invaluable for organizations seeking to optimize register specification, documentation, and CSR generation in a streamlined manner.
CrossBar's ReRAM Memory technology introduces a revolutionary approach to non-volatile memory that transcends the limitations of traditional memory solutions. ReRAM, or Resistive RAM, distinguishes itself through its simple architectural design, enabling manufacturers to scale it down to sizes smaller than 10nm and integrate it seamlessly with existing logic processes in a single foundry. This advancement allows for unprecedented energy efficiency, with ReRAM consuming just 1/20th of the energy compared to traditional flash memory solutions, while also offering dramatically improved endurance and performance metrics. The scalability of ReRAM supports high-density memory applications, including its potential for 3D stacking, which allows terabytes of storage to be integrated on-chip. ReRAM excels in delivering low latency and high-speed operations, making it especially suitable for applications requiring rapid data access and processing, such as in data centers and IoT devices. Its robust performance characteristics make it an ideal solution for modern computing demands, offering both hard macros and architectural licenses depending on customer needs. Another key benefit of ReRAM is enhanced security, essential in applications ranging from automotive to secure computing. By providing low power consumption combined with high data integrity, ReRAM is positioned as a pivotal technology in future-proofing data storage solutions. It has proven to be a secure alternative to flash memory, with superior operational characteristics that address the diverse needs of contemporary electronic and computing environments.
The Ncore Cache Coherent Interconnect from Arteris provides a quintessential solution for handling multi-core SoC design complications, facilitating heterogeneous coherency and efficient caching. It is distinguished by its high throughput, ensuring reliable and high-performance system-on-chips (SoCs). Ncore's configurable fabric offers designers the ability to establish a multi-die, multi-protocol coherent interconnect where emerge cutting-edge technologies like RISC-V can seamlessly integrate. This IP’s adaptability and scalable design unlock broader performance trajectories, whether for small embedded systems or extensive multi-billion transistor architectures. Ncore's strength lies in its ability to offer ISO 26262 ASIL D readiness, enabling designers to adhere to stringent automotive safety standards. Furthermore, its coupling with Magillem™ automation enhances the potential for rapid IP integration, simplifying multi-die designs and compressing development timelines. In addressing modern computational demands, Ncore is reinforced by robust quality of service parameters, secure power management, and seamless integration capabilities, making it an imperative asset in constructing scalable system architectures. By streamlining memory operations and optimizing data flow, it provides bandwidth that supports both high-end automotive and complex consumer electronics, fostering innovation and market excellence.
aiData functions as a crucial backbone for automated driving systems, providing a fully automated data pipeline tailored for ADAS and autonomous driving (AD) applications. This pipeline streamlines the Machine Learning Operations (MLOps) workflow, from data collection to curation and annotation, enhancing the development process by minimizing manual intervention. By leveraging AI-driven processes, aiData significantly reduces the resources required for data preparation and validation, making high-quality data more accessible for training sophisticated AI models. One of the key features of aiData is its comprehensive versioning system, which ensures complete transparency and traceability throughout the data lifecycle. This feature is pivotal for maintaining high standards in data quality, allowing developers to track changes and updates efficiently. Furthermore, aiData includes advanced tools for annotating data, supported by AI algorithms, which enable rapid and accurate labeling of both moving and static objects. This capability is particularly beneficial for creating dynamic and contextually-rich datasets needed for training robust AD systems. Beyond data preparation, aiData facilitates seamless integration with existing data infrastructure, supporting both on-premises and cloud-based deployment to cater to varying security and collaboration needs. As automotive companies face growing data requirements, aiData's scalable and modular architecture ensures that it can adapt to evolving project demands, offering invaluable support in the rapid deployment and validation of ADAS technologies.
Tower Semiconductor's BCD technology is engineered for power management solutions, offering a unique combination of bipolar, CMOS, and DMOS transistors. This technology efficiently addresses the need for high-performance power integrated circuits in portable, automotive, and consumer electronics. BCD processes allow for integrating high-voltage and low-voltage devices on the same chip, optimizing space and cost. The BCD technology shines in applications requiring robust power delivery and reliable performance under varying electrical conditions. By leveraging this technology, customers can achieve significant power conversion efficiency, essential for battery-powered and energy-efficient devices. High density integration of components ensures that power ICs remain compact yet versatile. A streamlined design process supports diverse applications from charging systems to energy management, catering to complex power architectures. This integration capability not only boosts device functionality but also enhances thermal management, making these solutions ideal for high-demand environments.
The pPLL05 Family offers a line of low-power all-digital fractional-N PLLs that are ideally suited for IoT and embedded applications where energy efficiency is paramount. These PLLs operate at frequencies up to 1GHz, delivering clocking capabilities for moderate speed microprocessor blocks under a reduced power footprint of less than 1.0mW. The architecture is easily integrable into any system design, maintaining performance consistency across diverse processes. Silicon-proven from 40nm down to 5nm, these PLLs support integer and fractional multiplication for flexible frequency management in a variety of digital systems.
Silvaco's Standard Cell libraries are expertly optimized for various process technologies, ensuring a balance between power, performance, and area. These libraries feature a vast array of cells designed to minimize delays and enhance routing density, making them suitable for high-performance applications. Each library is crafted with meticulous attention to detail, focusing on transistor resizing, threshold voltage balancing, and power optimization, providing a robust foundation for complex system-on-chip (SoC) designs.\n\nExtending these libraries with Power Management Kits takes power efficiency to a new level, particularly for applications requiring low energy consumption and high performance. With built-in features like multi-track heights and complex ALU function cells, Silvaco's Standard Cell Libraries offer significant enhancements in area utilization and power savings. Their wide compatibility with major foundries and available process nodes solidifies their place as a versatile choice for designers.\n\nThese libraries are complemented by robust engineering change order (ECO) kits, which allow for seamless late-stage design modifications, reducing re-spin costs and time. Specialty packages, including rad-hard, high-voltage, and low-leakage variants, further broaden their applicability across diverse sectors, reassuring engineers of their utility in both conventional and niche domains.
The iCan PicoPop® System on Module offers a compact solution for high-performance computing in constrained environments, particularly in the realm of aerospace technology. This system on module is designed to deliver robust computing power while maintaining minimal space usage, offering an excellent ratio of performance to size. The PicoPop® excels in integrating a variety of functions onto a single module, including processing, memory, and interface capabilities, which collectively handle the demanding requirements of aerospace applications. Its efficient power consumption and powerful processing capability make it ideally suited to a range of in-flight applications and systems. This solution is tailored to support the development of sophisticated aviation systems, ensuring scalability and flexibility in deployment. With its advanced features and compact form, the iCan PicoPop® System on Module stands out as a potent component for modern aerospace challenges.
The Cyclone V FPGA with Integrated PQC Processor by ResQuant is a specialized product that comes pre-equipped with a comprehensive NIST PQC cryptography suite. This FPGA is tailored for applications requiring a robust proof-of-concept for quantum-safe implementations. It ensures seamless integration into existing systems, providing a practical platform for testing and deployment in quantum-secure environments. This product is available at a competitive price and represents an ideal starting point for entities looking to explore and adopt quantum-resilient technologies. Its configuration allows for straightforward implementation in diverse hardware infrastructures while offering a reliable option for organizations aiming to stay ahead in the evolving cyber security landscape. By incorporating the latest in cryptographic standards and ensuring vendor independence, the Cyclone V FPGA with Integrated PQC Processor by ResQuant effectively bridges current hardware technologies and future-proof security needs. It supports industry-wide applications, from IoT and ICT to automotive and military sectors, underscoring ResQuant's versatility in hardware security solutions.
The APB4 GPIO module is a fully parameterized core providing flexible general purpose input/output (GPIO) capabilities within an APB bus environment. Designed to support a user-defined number of bidirectional I/O pins, it allows customization to fit a variety of system requirements, enhancing its adaptability in different design scenarios. This GPIO core supports programming capabilities for each of its pins, enabling tailored configurations for specific input, output, and interrupt purposes. It is an essential component for interfacing with various peripheral devices within an integrated system, providing accessibility and control where needed. Through its comprehensive configurability, the APB4 GPIO creates extensive possibilities for design enhancement and functionality expansion.
Silvaco's Embedded Memory Compilers are tailored for high performance and low power applications. These compilers are designed to provide superior scalability and reliability, accommodating a broad spectrum of memory solutions for various technological needs. With enhancements like advanced cache architectures, these solutions are built to meet the growing demands of AI and high performance computing (HPC) applications.\n\nThe adaptive nature of these memory compilers allows them to efficiently balance power and area, making them essential in minimizing power consumption without sacrificing performance. Features like built-in self-test (BIST) compatibility and redundancy options also help maintain data integrity and maximize yield. These compilers extend their versatility by supporting multiple power modes and offering a wide voltage operation range for varied applications.\n\nSupported across multiple process nodes and foundries, these memory compilers are ideal for a diverse array of products, ensuring low voltage operation and high performance at minimal energy consumption. The inclusion of custom characterization options further provides flexibility to meet specific design requirements, contributing to a broader application range from consumer electronics to specialized industrial sectors.
The SmartMem Subsystem is designed to enhance memory functionality through a synthesisable and configurable architecture. This memory subsystem significantly boosts power efficiencies and improves both performance and endurance. Not limited to just Numem's own products, it can easily interface with other high-performance MRAMs, RRAM, and Flash technologies, offering versatility across different hardware needs. Built with Numem's thorough memory expertise and innovative patents, the SmartMem Subsystem delivers MRAM performance that rivals SRAM, characterized by much lower standby power. Its intelligent power management system controls MRAM’s non-volatile nature for ultra-efficient operation, making it robust against endurance challenges while seamlessly integrating into varied systems, whether in edge devices or expansive data centers. The subsystem supports software-defined scalability, which negates the necessity for new hardware designs. This makes it an excellent choice for future-proofing memory solutions in AI workloads, ensuring agility and adaptability across rapid advancements in AI applications.
PermSRAM is a highly flexible non-volatile memory macro that functions on a foundry standard CMOS platform, suitable for process nodes ranging from 180nm to 28nm and beyond. It features a range of non-volatile memory capabilities, including a one-time programmable ROM and a pseudo multi-time PROM, with a multi-page configuration. The memory covers wide sizes from 64 bits to 512K bits and incorporates a non-rewritable hardware safety lock for secure code storage, offering robust security for sensitive data. This IP is ideal for applications such as security code storage, program storage, and analog trimming, thanks to its invisible charge trap memory mechanism and built-in self-test capabilities. PermSRAM can achieve automotive-grade data retention over high temperatures, making it a reliable choice for high-security applications.
Avant Technology's DRAM memory modules provide vital solutions for various industries, such as gaming, point-of-sale systems, and medical devices. These modules meet the JEDEC standards for reliability and performance, ensuring robust functionality for demanding applications. The industrial embedded series offers numerous options tailored to specific needs, including low voltage and high capacitance variants, which deliver both enhanced energy efficiency and decreased power consumption. The DRAM modules are available in different form factors like UDIMM, SODIMM, ECC DIMM, and Mini DIMM to cater to diverse application requirements. They support various interfaces, prominently DDR3, DDR4, and DDR5, offering scalable performance to match the advancing requirements of modern systems. Avant Technology ensures that these memory solutions can operate effectively across industrial, commercial, and consumer-grade environments, making them versatile for a wide range of devices. This memory technology enhances the speed and efficiency of devices, allowing for quicker data access and improved system responsiveness, vital for applications that demand high bandwidth and low latency. With these DRAM modules, Avant Technology supports innovations across sectors, helping their clients maintain cutting-edge operations in rapidly evolving technological landscapes.
Our SoC Platform is designed to accelerate the development of custom silicon products. Built with domain-specific architecture, it provides rapid and streamlined SoC design using silicon-proven IPs. The platform offers lower costs and reduced risks associated with prototyping and manufacturing, ensuring a quicker turnaround. Users benefit from pre-configured and verified IP pools, enabling faster bring-up of hardware and software. Designed for flexible applications, it supports a range of use cases from AI inference to IoT, helping companies achieve up to 50% faster time-to-market compared to industry standards.
Spectral CustomIP caters to bespoke memory architecture needs, offering a wide array of specially designed memory structures like Binary and Ternary CAMs, and multi-ported memories. These solutions integrate optimized circuitry for high speed and low power, ideal for complex IC applications. Spectral CustomIP is based on standard CMOS technology and is suitable for SOI or embedded Flash processes, making it versatile for various applications. Each module uses SpectralTrak technology for proactive monitoring of operational conditions, ensuring robust performance across different environments. The products support extensive configurability options like multi-bank and multi-port architectures, allowing for a tailored fit in specific applications. CustomIP addresses specialized requirements in networking, graphics applications, and mobile devices, providing unique power-down and test mode features. Offering a comprehensive set of tools for custom development, these solutions can be extensively modified and optimized by customers, delivering added value in terms of flexibility and control.
SkyeChip's Configurable I/O module facilitates high-speed data transmission reaching up to 3.2 GT/s, adaptable across a spectrum of I/O standards including LVDS, HCSL, POD, SSTL, HSTL, HSUL, LVSTL, and LVCMOS. This flexibility allows engineers to tailor the I/O performance to specific system requirements, enhancing design efficiency. Specifically architected to cater to variable voltage levels and signaling standards, it accommodates different applications by supporting multiple configurations from 1.1V to 1.5V. Its high-speed data handling capabilities make it crucial for interfacing in memory modules and high-data rate communications systems. Given its adaptability, this I/O solution is well-suited for leveraging underlying system capabilities, streamlining the design process, and optimizing operational efficiency. Its robust configuration options aid developers in achieving diverse system integrations within electronics.
The NuRAM Low Power Memory represents a state-of-the-art memory solution utilizing advanced MRAM technology. Engineered to provide rapid access times and extremely low leakage power, NuRAM is significantly more efficient in terms of cell area compared to traditional SRAM, being up to 2.5 times smaller. This makes it an ideal replacement for on-chip SRAM or embedded Flash, particularly in power-sensitive environments like AI or edge applications. The emphasis on optimizing power consumption makes NuRAM an attractive choice for enhancing the performance of xPU or ASIC designs. As modern applications demand higher efficiency, NuRAM stands out by offering crucial improvements in power management without sacrificing speed or stability. The technology offers a compelling choice for those seeking to upgrade their current systems with memory solutions that extend battery life and deliver impressive performance. NuRAM is particularly beneficial in environments where minimizing power usage is critical while maintaining high-speed operations. This makes it a preferred choice for applications ranging from wearables to high-performance computing at the edge.
I-fuse is an advanced one-time programming memory technology that features a non-explosive design. Unlike traditional anti-fuse approaches, I-fuse does not require a charge pump, which simplifies the process while enhancing reliability and performance. This technology is aimed at providing compact, highly efficient memory solutions, capable of functioning in a wide temperature range. The solution is fully qualified from 0.7 μm to 22 nm process nodes, making it versatile for a range of applications, including automotive, industrial, and medical use cases. It boasts features such as high reliability, minimal program and read voltage requirements, and low power consumption, making it a standout solution in the market. The innovative architecture of I-fuse enables easy testability and requires no redundancy. Attopsemi's commitment to quality and innovation is evident in the development of I-fuse, supported by over 90 patents. The technology has been widely adopted, incorporated into products by 150+ customers, and benefits from continuous updates and improvements that keep it at the cutting edge of semiconductor memory solutions.
This low-power, 12-bit ADC from Leo LSI is intended for applications that need reliable conversion with minimal energy use. Constructed on a 65nm process node, the ADC offers conversion speeds from 0.1MSPS up to 1MSPS, accommodating a variety of signal processing needs. Operating within an analog supply range of 2.4V to 3.6V and a digital range from 1.08V to 1.32V, this ADC can easily fit into compact and power-sensitive devices. Its low current requirement of just 1.1mA ensures minimal energy impact on systems. The ADC is designed to handle diverse sensor inputs efficiently, making it particularly useful for integration in power-conscious and space-limited devices like portable data acquisition systems and remote sensors.
CrossBar's ReRAM IP cores offer high-performance, embedded non-volatile memory specifically designed for use in microcontrollers (MCU) and System-on-Chip (SoC) designs. These cores provide industry-leading performance for multi-time programmable (MTP) memory applications, emphasizing enhanced energy efficiency and low latency operations ideal for IoT devices, wearables, tablets, and smartphones. Supporting integration at process nodes beginning from 28nm and below, these IP cores ensure that designers can leverage ReRAM's superior memory characteristics without the need for additional costly integration processes. CrossBar's ReRAM technology not only surpasses current flash performance in terms of data integrity but also provides lower energy code execution and storage solutions. The technology supports from 2M bits (256K Bytes) to 256M bits (32M Bytes) in density, accommodating a vast range of storage needs. Additionally, the ReRAM IP cores are available as either hard macros or as architectural licenses, providing flexibility for integration into various SoC designs. Besides its application in non-volatile memory contexts, CrossBar's ReRAM also enables security-focused solutions using physical unclonable function (PUF) technology, further broadening its practical applications across secure computing domains. This versatility and high-performance delivery make ReRAM an attractive option for next-generation embedded systems, facilitating innovation in how memory interacts with other SoC components.
Static Random-Access Memory (SRAM) developed by DXCorr Design is geared towards high performance and low power applications, ensuring fast access times and efficiency. SRAM is a key component in many electronic systems, offering rapid data access suitable for various cache applications and high-speed computing environments. DXCorr has fine-tuned its SRAM designs to eliminate bottlenecks associated with concurrent read and write operations, enhancing reliability and speed in dual-port configurations. The company's SRAM solutions are built upon years of expertise in custom circuit design, where meticulous transistor-level layout optimizations result in reduced access times and power consumption. Their approach allows for the seamless integration of SRAM modules in advanced system-on-chip (SoC) designs, enhancing overall system performance. Additionally, DXCorr's SRAM is customized for numerous use cases, aligning with the specific requirements of diverse industries and pushing forward the technology at process nodes as advanced as 2nm and 3nm. By providing solutions that are adaptable to various standard and custom process technologies, the company enables a broad range of applications in both consumer and industrial electronics. DXCorr's SRAMs stand out in the competitive market by virtue of their high density and efficient energy usage, catering to the growing demand for power-efficient memory components in modern digital devices.
1D Optical Micrometers are high-precision, non-contact measurement tools ideal for assessing the diameters, gaps, and displacements of wires, rods, and cylindrical objects. Designed to operate over a measurement range from 5 mm to 100 mm with a measuring error of ±0.3 µm, these micrometers ensure accurate and repeatable measurements at a sampling rate of 10,000 Hz. Such precision makes them indispensable in applications where high accuracy and non-destructive testing are crucial. Part of the RF651, RF656, and RF656XY series, these micrometers are equipped to handle a variety of measurement tasks in industrial environments. They are primarily used in quality assurance roles where dimensional accuracy of components is of utmost importance. The micrometers are particularly effective in the inline measurement of production batches, ensuring consistent quality across products. By providing precise data on dimensions and positional characteristics, these micrometers help maintain standards and enhance the performance of manufacturing systems. Their non-contact nature eliminates potential damage or contamination risks during inspection, making them a preferred choice in settings demanding stringent quality controls.
EverOn is a groundbreaking Single Port Ultra Low Voltage SRAM IP that delivers exemplary dynamic and static power savings. It is particularly suited for IoT and wearable device markets, where energy efficiency and performance are both critically required. Silicon-proven on 40ULP BULK CMOS processes, EverOn brings forth a new paradigm in power savings, offering up to 80% reduction in dynamic power and 75% in static power. Operating in a broad voltage range from 0.6V to 1.21V, EverOn achieves record-setting operational capabilities with its pioneering cycle time dynamics. Boasting a 20MHz cycle time at the ultra-low 0.6V mark, scaling to 300MHz at its upper voltage threshold, this IP is instrumental in the development of future-facing applications. The ULV compiler supports flexible configurations, enabling tailor-fit solutions suiting specific system requirements. EverOn’s SMART-Assist technology allows for robust operation down to retention voltages, complimenting its ultra-low power profile with considerable system flexibility. Features include memory bank subdivision and advanced sleep modes, tuned for maximum energy efficiency. Such characteristics make EverOn a frontrunner for products needing extended operational times and robust battery longevity.
Analog Bits provides advanced I/O solutions tailored for high-speed data transfer and die-to-die communication. Their I/O offerings are designed to minimize power consumption while delivering optimal signaling quality through differential clocking and signaling techniques. These solutions are crafted to ensure effective integration with modern SoC architectures, providing customization options to meet specific technical requirements. The I/O technologies developed by Analog Bits are proven in high-volume production at nodes as small as 5nm, ensuring reliability and performance. Manufactured using state-of-the-art processes, Analog Bits' I/O IP supports a broad range of applications, from consumer electronics to complex server environments. Their expertise in transistor-efficient architecture further boosts signaling capabilities while maintaining compact die areas, making them an ideal choice for next-generation semiconductor development.
The Universal DSP Library by Enclustra is designed to streamline digital signal processing across various applications. This library provides an extensive collection of DSP functions optimized for FPGA performance, enabling users to implement complex signal processing algorithms with ease and efficiency. It's tailored for image processing, audio applications, and other demanding DSP tasks, ensuring high performance and resource-efficient implementations. The library supports fixed-point and floating-point operations, offering flexibility in design according to specific needs. This makes it an invaluable resource for both prototyping and deployment in production environments, minimizing development time and maximizing performance. Furthermore, the Universal DSP Library includes a comprehensive set of features that are readily integrable with existing FPGA designs. Complementing its robust algorithmic offerings, Enclustra ensures that their DSP library is highly customizable, catering to unique processing requirements. This adaptability helps maintain high signal integrity and algorithm precision, making it an ideal choice for engineers looking to optimize their FPGA-based signal processing systems.
AON1100 is acclaimed as a forefront AI chip specifically for voice and sensor applications. Known for its extraordinary power efficiency, it consumes less than 260μW, excelling in sub-0dB signal-to-noise ratio environments while maintaining 90% accuracy. Designed for constantly operating devices, this chip leverages high-precision processing, facilitating its extensive application in always-on technologies like smart homes and automotive systems.
Providing cutting-edge memory technology, Tower Semiconductor's NVM solutions are pivotal for data storage needs across various electronic devices. These solutions offer reliable, long-term data retention, which is crucial for applications necessitating constant and secure storage, such as in automotive applications, industrial controls, and consumer electronics. Engineered for efficiency, NVM technology by Tower Semiconductor includes proprietary developments such as Y-Flash and e-Fuse technologies. These innovations provide enhanced performance for embedded memory tasks, ensuring stable and secure data management under various conditions. The technology is particularly important for applications where seamless operation is a necessity, notably in real-time data processing environments. NVM solutions from Tower Semiconductor underscore adaptability, supporting multiple functionalities while ensuring device compatibility and longevity. With their emphasis on streamlined integration, NVM technologies assist in reducing overall power consumption and enhancing the memory capabilities of modern devices, making them indispensable in the ever-evolving digital landscape.
TwinBit Gen-2 is an advanced non-volatile memory solution supporting 40nm to 22nm process nodes. This generation builds on the capabilities of Gen-1 by integrating a newly developed Pch Schottky Non-Volatile Memory Cell, which enables ultra-low-power operations and does not require additional masking steps or process modifications. TwinBit Gen-2's refined architecture allows for efficient energy management and high-density memory implementations, maintaining a compact footprint while providing robust data retention features. The IP supports a wide range of applications, including IoT devices and high-security environments that demand reliable, field-rewritable memory functionalities. With these enhancements, TwinBit Gen-2 represents a leap forward in meeting modern semiconductor memory needs.
The Rabbit 2000 microprocessor is a compact, synthesis-ready 19k gate design featuring 100 pins, ideal for streamlined application needs requiring reliable performance. The Rabbit 2000 model is geared towards technology-independent applications, providing integrated solutions for various projects. Its lightweight configuration makes it a popular choice for entry-level designs. Its synthesizable model comes complete with a Verilog HDL test bench and a comprehensive test suite. The design includes all necessary elements for silicon verification and testing, packaged with user documentation to aid implementation. As part of Systemyde’s offerings, it emphasizes ease of integration into existing systems. Systemyde ensures the Rabbit 2000 operates optimally within FPGA and ASIC environments, facilitating smooth transitions between development stages. The microprocessor is silicon-proven, highlighting its reliability in practical applications and ensuring lowest land footprint with a focus on scalability. As a pivotal element within the Rabbit processor lineup, it delivers excellent base-level functionality required for standardized digital operations.
DenseMem provides a cutting-edge solution to memory capacity constraints by effectively doubling the connected CXL memory capacity via advanced compression technologies. It is designed to alleviate the common issues of memory bottlenecks in high-performance computing environments, delivering seamless integration and configuration flexibility. By leveraging dense memory mapping strategies, DenseMem transforms traditional computer architectures into high-capacity engines capable of sustaining large data aggregates. Through its deployment, users gain a remarkable edge in terms of simultaneous data access and processing capabilities, thereby addressing critical throughput needs in enterprise settings. Adapting robustly to CXL memory systems, this software solution aligns with modern data handling paradigms, enhancing both speed and efficiency without an undue increase in power consumption. Its efficacy in simplifying complex memory allocations while upholding data integrity and operation security makes DenseMem a foundational technology for future-proofing IT frameworks in various industries.
RAAAM's GCRAM technology is a pioneering on-chip memory solution that transforms semiconductor design by substantially reducing silicon area and minimizing power consumption. Offering up to a 50% reduction in silicon area compared to traditional SRAM, GCRAM is an efficient and scalable alternative that aligns with the demands of modern high-performance computing environments. Its design, compatible with standard CMOS processes, eliminates the need for costly additional fabrication steps, making it a cost-effective solution for semiconductor developers. In the context of rapidly advancing fields such as artificial intelligence and machine learning, augmented reality, virtual reality, and 5G networking, GCRAM provides a crucial edge. It addresses the limitations of traditional SRAMs that struggle with scalability at advanced process nodes, offering improved efficiency and reduced costs. Furthermore, GCRAM supports a wide array of applications that demand enhanced memory capacity, serving as a strategic tool for developers seeking to exceed current memory constraints without incurring significant cost increases. This technology effectively carries forward Moore's Law within the on-chip memory space, cementing RAAAM’s role as a frontrunner in semiconductor innovation.
The Vega eFPGA is a flexible programmable solution crafted to enhance SoC designs with substantial ease and efficiency. This IP is designed to offer multiple advantages such as increased performance, reduced costs, secure IP handling, and ease of integration. The Vega eFPGA boasts a versatile architecture allowing for tailored configurations to suit varying application requirements. This IP includes configurable tiles like CLB (Configurable Logic Blocks), BRAM (Block RAM), and DSP (Digital Signal Processing) units. The CLB part includes eight 6-input Lookup Tables that provide dual outputs, and also an optional configuration with a fast adder having a carry chain. The BRAM supports 36Kb dual-port memory and offers flexibility for different configurations, while the DSP component is designed for complex arithmetic functions with its 18x20 multipliers and a wide 64-bit accumulator. Focused on allowing easy system design and acceleration, Vega eFPGA ensures seamless integration and verification into any SoC design. It is backed by a robust EDA toolset and features that allow significant customization, making it adaptable to any semiconductor fabrication process. This flexibility and technological robustness places the Vega eFPGA as a standout choice for developing innovative and complex programmable logic solutions.
Absolute Linear Position Sensors are sophisticated devices designed to measure and verify displacements, dimensions, and deformities in engineered objects. Known for their precision, these sensors employ an innovative absolute measurement technology that covers ranges from 3 mm to 55 mm with a resolution as fine as 0.1 µm. They provide crucial data necessary for quality assurance and process control, making them essential in many high-precision industrial applications. The RF251 and RF256 series of Absolute Linear Position Sensors are engineered to deliver robust performance, offering a reliable solution for monitoring and validating measurements in dynamic operational environments. These devices are crucial for applications requiring an accurate assessment of object deformation, surface profiles, and run-outs, ensuring the quality and integrity of components. Their advanced design allows integration into complex automation systems, enhancing the precision and efficiency of data collection processes across various sectors. The sensors are effective tools for applications needing meticulous measurement of mechanical displacements, especially where non-contact methods are necessary to avoid potential interference or contamination.
Join the world's most advanced semiconductor IP marketplace!
It's free, and you'll get all the tools you need to discover IP, meet vendors and manage your IP workflow!
Join the world's most advanced AI-powered semiconductor IP marketplace!
It's free, and you'll get all the tools you need to advertise and discover semiconductor IP, keep up-to-date with the latest semiconductor news and more!
Plus we'll send you our free weekly report on the semiconductor industry and the latest IP launches!