All IPs > Processor > IoT Processor
The "IoT Processor" category in our Silicon Hub catalog features a range of semiconductor IPs specifically engineered for the Internet of Things (IoT) landscape. These IPs play a critical role in enabling smart connectivity, control, and data processing in IoT devices. Leveraging cutting-edge technology, IoT processors are designed to meet the unique demands of interconnected smart devices, balancing the need for powerful performance with energy efficiency and seamless connectivity.
IoT processors are central to a wide array of applications, from smart homes and industrial IoT to wearables and smart cities. In smart homes, IoT processors enable devices to interact seamlessly, allowing for automated lighting, climate control, and security systems. In industrial settings, they facilitate real-time monitoring and analytics, improving operational efficiency and safety. The compact and efficient designs of these processors also make them ideal for wearables, where power consumption and size are critical factors.
The semiconductor IPs available in this category support a variety of architectures and computing needs, providing flexibility in design and application. They incorporate advanced features such as multi-core processing, integrated connectivity solutions like Wi-Fi and Bluetooth, and robust security protocols to protect sensitive data. These processors are optimized to handle the challenges of IoT environments, offering low latency and the ability to process data locally, reducing the dependency on cloud computing and enhancing response times.
Furthermore, the "IoT Processor" category emphasizes sustainability by offering IPs that reduce energy consumption while maintaining high performance levels. This makes them vital components in developing sustainable IoT solutions that are both environmentally friendly and economically viable. As IoT technology continues to evolve, the processors in this category will enable innovation, drive market growth, and fulfill the increasing demands of a connected world.
The Akida 2nd Generation represents a leap forward in the realm of AI processing, enhancing upon its predecessor with greater flexibility and improved efficiency. This advanced neural processor core is tailored for modern applications demanding real-time response and ultra-low power consumption, making it ideal for compact and battery-operated devices. Akida 2nd Generation supports various programming configurations, including 8-, 4-, and 1-bit weights and activations, thus providing developers with the versatility to optimize performance versus power consumption to meet specific application needs. Its architecture is fully digital and silicon-proven, ensuring reliable deployment across diverse hardware setups. With features such as programmable activation functions and support for sophisticated neural network models, Akida 2nd Generation enables a broad spectrum of AI tasks. From object detection in cameras to sophisticated audio sensing, this iteration of the Akida processor is built to handle the most demanding edge applications while sustaining BrainChip's hallmark efficiency in processing power per watt.
The Akida IP is an advanced processor core designed to mimic the efficient processing characteristics of the human brain. Inspired by neuromorphic engineering principles, it delivers real-time AI performance while maintaining a low power profile. The architecture of the Akida IP is sophisticated, allowing seamless integration into existing systems without the need for continuous external computation. Equipped with capabilities for processing vision, audio, and sensor data, the Akida IP stands out by being able to handle complex AI tasks directly on the device. This is done by utilizing a flexible mesh of nodes that efficiently distribute cognitive computing tasks, enabling a scalable approach to machine learning applications. Each node supports hundreds of MAC operations and can be configured to adapt to various computational requirements, making it a versatile choice for AI-centric endeavors. Moreover, the Akida IP is particularly beneficial for edge applications where low latency, high efficiency, and security are paramount. With capabilities for event-based processing and on-chip learning, it enhances response times and reduces data transfer needs, thereby bolstering device autonomy. This solidifies its position as a leading solution for embedding AI into devices across multiple industries.
The Yitian 710 Processor is a landmark server chip released by T-Head Semiconductor, representing a breakthrough in high-performance computing. This chip is designed with cutting-edge architecture that utilizes advanced Armv9 structure, accommodating a range of demanding applications. Engineered by T-Head's dedicated research team, Yitian 710 integrates high efficiency and bandwidth properties into a unique 2.5D package, housing two dies and a staggering 60 billion transistors. The Yitian 710 encompasses 128 Armv9 high-performance cores, each equipped with 64KB L1 instruction cache, 64KB L1 data cache, and 1MB L2 cache, further amplified by a collective on-chip system cache of 128MB. These configurations enable optimal data processing and retrieval speeds, making it suitable for data-intensive tasks. Furthermore, the memory subsystem stands out with its 8-channel DDR5 support, reaching peak bandwidths of 281GB/s. In terms of connectivity, the Yitian 710's I/O system includes 96 PCIe 5.0 channels with a bidirectional theoretical total bandwidth of 768GB/s, streamlining high-speed data transfer critical for server operations. Its architecture is not only poised to meet the current demands of data centers and cloud services but also adaptable for future advancements in AI inference and multimedia processing tasks.
The AI Camera Module from Altek is a versatile, high-performance component designed to meet the increasing demand for smart vision solutions. This module features a rich integration of imaging lens design and combines both hardware and software capacities to create a seamless operational experience. Its design is reinforced by Altek's deep collaboration with leading global brands, ensuring a top-tier product capable of handling diverse market requirements. Equipped to cater to AI and IoT interplays, the module delivers outstanding capabilities that align with the expectations for high-resolution imaging, making it suitable for edge computing applications. The AI Camera Module ensures that end-user diversity is meaningfully addressed, offering customization in device functionality which supports advanced processing requirements such as 2K and 4K video quality. This module showcases Altek's prowess in providing comprehensive, all-in-one camera solutions which leverage sophisticated imaging and rapid processing to handle challenging conditions and demands. The AI Camera's technical blueprint supports complex AI algorithms, enhancing not just image quality but also the device's interactive capacity through facial recognition and image tracking technology.
The A25 processor model is a versatile CPU suitable for a variety of embedded applications. With its 5-stage pipeline and 32/64-bit architecture, it delivers high performance even with a low gate count, which translates to efficiency in power-sensitive environments. The A25 is equipped with Andes Custom Extensions that enable tailored instruction sets for specific application accelerations. Supporting robust high-frequency operations, this model shines in its ability to manage data prefetching and cache coherence in multicore setups, making it adept at handling complex processing tasks within constrained spaces.
Chimera GPNPU is engineered to revolutionize AI/ML computational capabilities on single-core architectures. It efficiently handles matrix, vector, and scalar code, unifying AI inference and traditional C++ processing under one roof. By alleviating the need for partitioning AI workloads between different processors, it streamlines software development and drastically speeds up AI model adaptation and integration. Ideal for SoC designs, the Chimera GPNPU champions an architecture that is both versatile and powerful, handling complex parallel workloads with a single unified binary. This configuration not only boosts software developer productivity but also ensures an enduring flexibility capable of accommodating novel AI model architectures on the horizon. The architectural fabric of the Chimera GPNPU seamlessly blends the high matrix performance of NPUs with C++ programmability found in traditional processors. This core is delivered in a synthesizable RTL form, with scalability options ranging from a single-core to multi-cluster designs to meet various performance benchmarks. As a testament to its adaptability, the Chimera GPNPU can run any AI/ML graph from numerous high-demand application areas such as automotive, mobile, and home digital appliances. Developers seeking optimization in inference performance will find the Chimera GPNPU a pivotal tool in maintaining cutting-edge product offerings. With its focus on simplifying hardware design, optimizing power consumption, and enhancing programmer ease, this processor ensures a sustainable and efficient path for future AI/ML developments.
xcore.ai is XMOS Semiconductor's innovative programmable chip designed for advanced AI, DSP, and I/O applications. It enables developers to create highly efficient systems without the complexity typical of multi-chip solutions, offering capabilities that integrate AI inference, DSP tasks, and I/O control seamlessly. The chip architecture boasts parallel processing and ultra-low latency, making it ideal for demanding tasks in robotics, automotive systems, and smart consumer devices. It provides the toolset to deploy complex algorithms efficiently while maintaining robust real-time performance. With xcore.ai, system designers can leverage a flexible platform that supports the rapid prototyping and development of intelligent applications. Its performance allows for seamless execution of tasks such as voice recognition and processing, industrial automation, and sensor data integration. The adaptable nature of xcore.ai makes it a versatile solution for managing various inputs and outputs simultaneously, while maintaining high levels of precision and reliability. In automotive and industrial applications, xcore.ai supports real-time control and monitoring tasks, contributing to smarter, safer systems. For consumer electronics, it enhances user experience by enabling responsive voice interfaces and high-definition audio processing. The chip's architecture reduces the need for exterior components, thus simplifying design and reducing overall costs, paving the way for innovative solutions where technology meets efficiency and scalability.
The RV12 RISC-V Processor is a highly configurable, single-core CPU that adheres to RV32I and RV64I standards. It’s engineered for the embedded market, offering a robust structure based on the RISC-V instruction set. The processor's architecture allows simultaneous instruction and data memory accesses, lending itself to a broad range of applications and maintaining high operational efficiency. This flexibility makes it an ideal choice for diverse execution requirements, supporting efficient data processing through an optimized CPU framework. Known for its adaptability, the RV12 processor can support multiple configurations to suit various application demands. It is capable of providing the necessary processing power for embedded systems, boasting a reputation for stability and reliability. This processor becomes integral for designs that require a maintainability of performance without compromising on the configurability aspect, meeting the rigorous needs of modern embedded computing. The processor's support of the open RISC-V architecture ensures its capability to integrate into existing systems seamlessly. It lends itself well to both industrial and academic applications, offering a resource-efficient platform that developers and researchers can easily access and utilize.
The KL520 marks Kneron's foray into the edge AI landscape, offering an impressive combination of size, power efficiency, and performance. Armed with dual ARM Cortex M4 processors, this chip can operate independently or as a co-processor to enable AI functionalities such as smart locks and security monitoring. The KL520 is adept at 3D sensor integration, making it an excellent choice for applications in smart home ecosystems. Its compact design allows devices powered by it to operate on minimal power, such as running on AA batteries for extended periods, showcasing its exceptional power management capabilities.
The Hanguang 800 AI Accelerator by T-Head Semiconductor is a powerful AI acceleration chip designed to enhance machine learning tasks. It excels in providing the computational power necessary for intensive AI workloads, effectively reducing processing times for large-scale data frameworks. This makes it an ideal choice for organizations aiming to infuse AI capabilities into their operations with maximum efficiency. Built with an emphasis on speed and performance, the Hanguang 800 is optimized for applications requiring vast amounts of data crunching. It supports a diverse array of AI models and workloads, ensuring flexibility and robust performance across varying use cases. This accelerates the deployment of AI applications in sectors such as autonomous driving, natural language processing, and real-time data analysis. The Hanguang 800's architecture is complemented by proprietary algorithms that enhance processing throughput, competing against traditional processors by providing significant gains in efficiency. This accelerator is indicative of T-Head's commitment to advancing AI technologies and highlights their capability to cater to specialized industry needs through innovative semiconductor developments.
The KL530 represents a significant advancement in AI chip technology with a new NPU architecture optimized for both INT4 precision and transformer networks. This SOC is engineered to provide high processing efficiency and low power consumption, making it suitable for AIoT applications and other innovative scenarios. It features an ARM Cortex M4 CPU designed for low-power operation and offers a robust computational power of up to 1 TOPS. The chip's ISP enhances image quality, while its codec ensures efficient multimedia compression. Notably, the chip's cold start time is under 500 ms with an average power draw of less than 500 mW, establishing it as a leader in energy efficiency.
The RISC-V Core-hub Generators from InCore are tailored for developers who need advanced control over their core architectures. This innovative tool enables users to configure core-hubs precisely at the instruction set and microarchitecture levels, allowing for optimized design and functionality. The platform supports diverse industry applications by facilitating the seamless creation of scalable and customizable RISC-V cores. With the RISC-V Core-hub Generators, InCore empowers users to craft their own processor solutions from the ground up. This flexibility is pivotal for businesses looking to capitalize on the burgeoning RISC-V ecosystem, providing a pathway to innovation with reduced risk and cost. Incorporating feedback from leading industry partners, these generators are designed to lower verification costs while accelerating time-to-market for new designs. Users benefit from InCore's robust support infrastructure and a commitment to simplifying complex chip design processes. This product is particularly beneficial for organizations aiming to integrate RISC-V technology efficiently into their existing systems, ensuring compatibility and enhancing functionality through intelligent automation and state-of-the-art tools.
Micro Magic's Ultra-Low-Power 64-Bit RISC-V Core is a highly efficient design that operates with remarkably low power consumption, requiring only 10mW at 1GHz. This core exemplifies Micro Magic’s commitment to power efficiency, as it integrates advanced techniques to maintain high performance even at lower voltages. The core is engineered for applications where energy conservation is crucial, making it ideal for modern, power-sensitive devices. The architectural design of this RISC-V core utilizes innovative technology to ensure high-speed processing capabilities while minimizing power draw. This balance is achieved through precise engineering and the use of state-of-the-art design methodologies that reduce operational overhead without compromising performance. As a result, this core is particularly suited for applications in portable electronics, IoT devices, and other areas where low-power operation is a necessity. Micro Magic's experience in developing high-speed, low-power solutions is evident in this core's design, ensuring that it delivers reliable performance under various operational conditions. The Ultra-Low-Power 64-Bit RISC-V Core represents a significant advancement in processor efficiency, providing a robust solution for designers looking to enhance their products' capabilities while maintaining a low power footprint.
The AX45MP is engineered as a high-performance processor that supports multicore architecture and advanced data processing capabilities, particularly suitable for applications requiring extensive computational efficiency. Powered by the AndesCore processor line, it capitalizes on a multicore symmetric multiprocessing framework, integrating up to eight cores with robust L2 cache management. The AX45MP incorporates advanced features such as vector processing capabilities and support for MemBoost technology to maximize data throughput. It caters to high-demand applications including machine learning, digital signal processing, and complex algorithmic computations, ensuring data coherence and efficient power usage.
The N Class RISC-V CPU IP from Nuclei is tailored for applications where space efficiency and power conservation are paramount. It features a 32-bit architecture and is highly suited for microcontroller applications within the AIoT realm. The N Class processors are crafted to provide robust processing capabilities while maintaining a minimal footprint, making them ideal candidates for devices that require efficient power management and secure operations. By adhering to the open RISC-V standard, Nuclei ensures that these processors can be seamlessly integrated into various solutions, offering customizable options to fit specific system requirements.
The Codasip RISC-V BK Core Series offers versatile, low-power, and high-performance solutions tailored for various embedded applications. These cores ensure efficiency and reliability by incorporating RISC-V compliance and are verified through advanced methodologies. Known for their adaptability, these cores can cater to applications needing robust performance while maintaining stringent power and area requirements.
The NMP-750 is AiM Future's powerful edge computing accelerator designed specifically for high-performance tasks. With up to 16 TOPS of computational throughput, this accelerator is perfect for automotive, AMRs, UAVs, as well as AR/VR applications. Fitted with up to 16 MB of local memory and featuring RISC-V or Arm Cortex-R/A 32-bit CPUs, it supports diverse data processing requirements crucial for modern technological solutions. The versatility of the NMP-750 is displayed in its ability to manage complex processes such as multi-camera stream processing and spectral efficiency management. It is also an apt choice for applications that require energy management and building automation, demonstrating exceptional potential in smart city and industrial setups. With its robust architecture, the NMP-750 ensures seamless integration into systems that need to handle large data volumes and support high-speed data transmission. This makes it ideal for applications in telecommunications and security where infrastructure resilience is paramount.
The C100 IoT chip by Chipchain is engineered to meet the diverse needs of modern IoT applications. It integrates a powerful 32-bit RISC-V CPU capable of reaching speeds up to 1.5GHz, with built-in RAM and ROM to facilitate efficient data processing and computational capabilities. This sophisticated single-chip solution is known for its low power consumption, making it ideal for a variety of IoT devices. This chip supports seamless connectivity through embedded Wi-Fi and multiple transmission interfaces, allowing it to serve broad application areas with minimal configuration complexity. Additionally, it boasts integrated ADCs, LDOs, and temperature sensors, offering a comprehensive toolkit for developers looking to innovate across fields like security, healthcare, and smart home technology. Notably, the C100 simplifies the development process with its high level of integration and performance. It stands as a testament to Chipchain's commitment to providing reliable, high-performance solutions for the rapidly evolving IoT landscape. The chip's design focuses on ensuring stability and security, which are critical in IoT installations.
The SCR6 microcontroller core offers high performance within a microcontroller framework, featuring a sophisticated 12-stage dual-issue out-of-order pipeline. It's aimed at applications needing high processing power but within the constraints of embedded systems. The core includes a high-performance floating-point unit (FPU), making it suitable for computation-heavy tasks while also supporting real-time operating systems. Its design ensures its applicability across fields like industrial automation, sensor fusion, and automotive systems, where power efficiency and performance are critical.
The RISC-V Core from AheadComputing is a state-of-the-art application processor, designed to drive next-generation computing solutions. Built on an open-source architecture, this processor core emphasizes enhanced instruction per cycle (IPC) performance, setting the stage for highly efficient computing capabilities. As part of the company's commitment to delivering world-leading performance, the RISC-V Core provides a reliable backbone for advanced computing tasks across various applications. This core's design harnesses the power of 64-bit architecture, providing significant improvements in data handling and processing speed. The focus on 64-bit processing facilitates better computational tasks, ensuring robust performance in data-intensive applications. With AheadComputing's emphasis on superior compute solutions, the RISC-V Core exemplifies their commitment to power, performance, and flexibility. As a versatile computing component, the RISC-V Core suits a range of applications from consumer electronics to enterprise-level computing. It is designed to integrate seamlessly into diverse systems, meeting complex computational demands with finesse. This core stands out in the industry, underpinned by AheadComputing's dedication to pushing the boundaries of what a processor can achieve.
The Spiking Neural Processor T1 is an ultra-low power processor developed specifically for enhancing sensor capabilities at the edge. By leveraging advanced Spiking Neural Networks (SNNs), the T1 efficiently deciphers patterns in sensor data with minimal latency and power usage. This processor is especially beneficial in real-time applications, such as audio recognition, where it can discern speech from audio inputs with sub-millisecond latency and within a strict power budget, typically under 1mW. Its mixed-signal neuromorphic architecture ensures that pattern recognition functions can be continually executed without draining resources. In terms of processing capabilities, the T1 resembles a dedicated engine for sensor tasks, offering functionalities like signal conditioning, filtering, and classification independent of the main application processor. This means tasks traditionally handled by general-purpose processors can now be offloaded to the T1, conserving energy and enhancing performance in always-on scenarios. Such functionality is crucial for pervasive sensing tasks across a range of industries. With an architecture that balances power and performance impeccably, the T1 is prepared for diverse applications spanning from audio interfaces to the rapid deployment of radar-based touch-free interactions. Moreover, it supports presence detection systems, activity recognition in wearables, and on-device ECG processing, showcasing its versatility across various technological landscapes.
The SCR7 application core is built for high-performance computing environments, featuring a 12-stage dual-issue out-of-order pipeline. It supports both cache coherency and symmetric multiprocessing, with the capability to handle up to 8 cores. This core is tailored for applications that require robust data processing capabilities, such as those found in data centers and enterprise networks. Its architecture supports extensive multitasking and advanced memory management, making it a powerful addition to any high-demand computing environment.
NeuroMosAIc Studio serves as a comprehensive software platform that simplifies the process of developing and deploying AI models. Designed to optimize edge AI applications, this platform assists users through model conversion, mapping, and simulation, ensuring optimal use of resources and efficiency. It offers capabilities like network quantization and compression, allowing developers to push the limits in terms of performance while maintaining compact model sizes. The studio also supports precision adjustments, providing deep insights into hardware optimization, and aiding in the generation of precise outputs tailored to specific application needs. AiM Future's NeuroMosAIc Studio boosts the efficiency of training stages and quantization, ultimately facilitating the delivery of high-quality AI solutions for both existing and emerging technologies. It's an indispensable tool for those looking to enhance AI capabilities in embedded systems without compromising on power or performance.
The Y180 is a microprocessor that serves as a precise clone of the Zilog Z180 CPU, encapsulating approximately 8,000 gates. This processor provides the familiar functionalities and efficiencies of the Z180 architecture while enhancing performance through Systemyde's design optimizations. A critical feature of the Y180 is its ability to seamlessly integrate within systems requiring the well-established Z180 instruction set. This compatibility enables the Y180 to be a direct replacement or enhancement in existing infrastructure, providing a straightforward upgrade path with minimal impact on design integration. Systemyde backs the Y180 with a comprehensive set of design and testing tools, ensuring that each implementation meets stringent operational standards. Its efficient architecture and silicon-proven reliability make it an ideal choice for applications that benefit from the Z180 design philosophy while leveraging modern advancements in processing capabilities.
The NMP-350 is an endpoint accelerator designed to deliver the lowest power and cost efficiency in its class. Ideal for applications such as driver authentication and health monitoring, it excels in automotive, AIoT/sensors, and wearable markets. The NMP-350 offers up to 1 TOPS performance with 1 MB of local memory, and is equipped with a RISC-V or Arm Cortex-M 32-bit CPU. It supports multiple use-cases, providing exceptional value for integrating AI capabilities into various devices. NMP-350's architectural design ensures optimal energy consumption, making it particularly suited to Industry 4.0 applications where predictive maintenance is crucial. Its compact nature allows for seamless integration into systems requiring minimal footprint yet substantial computational power. With support for multiple data inputs through AXI4 interfaces, this accelerator facilitates enhanced machine automation and intelligent data processing. This product is a testament to AiM Future's expertise in creating efficient AI solutions, providing the building blocks for smart devices that need to manage resources effectively. The combination of high performance with low energy requirements makes it a go-to choice for developers in the field of AI-enabled consumer technology.
The RISCV SoC - Quad Core Server Class is engineered for high-performance applications requiring robust processing capabilities. Designed around the RISC-V architecture, this SoC integrates four cores to offer substantial computing power. It's ideal for server-class operations, providing both performance efficiency and scalability. The RISCV architecture allows for open-source compatibility and flexible customization, making it an excellent choice for users who demand both power and adaptability. This SoC is engineered to handle demanding workloads efficiently, making it suitable for various server applications.
The TT-Ascalon™ is a high-performance RISC-V CPU designed for general-purpose control, emphasizing power and area efficiency. This processor features an Out-of-Order, superscalar architecture that adheres to the RISC-V RVA23 profile, co-developed with Tenstorrent's own Tensix IP for optimized performance. TT-Ascalon™ is highly scalable, suitable for various high-demand applications that benefit from robust computational capabilities. It's engineered to deliver unmatched performance while maintaining energy efficiency, making it ideal for operations that require reliability without compromising on speed and power efficiency.
The SiFive Essential family is designed to deliver high customization for processors across varying applications, from standalone MCUs to deeply embedded systems. This family of processor cores provides a versatile solution, meeting diverse market needs with an optimal combination of power, area, and performance. Within this lineup, users can tailor processors for specific market requirements, ranging from simple MCUs to fully-featured, Linux-capable designs. With features such as high configurability, SiFive Essential processors offer flexible design points, allowing scaling from basic 2-stage pipelines to advanced dual-issue superscalar configurations. This adaptability makes SiFive Essential suitable for a wide variety of use cases in microcontrollers, IoT devices, and control plane processing. Additionally, their innovation is proven by billions of units shipped worldwide, highlighting their reliability and versatility. The Essential cores also provide advanced integration options within SoCs, enabling smooth interface and optimized performance. This includes pre-integrated trace and debug features, ensuring efficient development and deployment in diverse applications.
The RISC-V Processor Core provides a foundation for developing customizable, open-standard applications, making it a popular choice for modern computing needs. Benefiting from the RISC-V architecture's flexibility, this core can be tailored to meet specific processing requirements across various embedded systems. Industries dealing with complex design challenges find this open standard not only cost-effective but also powerful in fostering innovation. Optimized for efficiency, the RISC-V Processor Core enables the execution of robust software environments and applications, supporting tasks ranging from simple control functions to more demanding compute-heavy operations. This versatility extends to the seamless integration of additional custom IPs, allowing designers to enhance functionality without performance trade-offs. In high-performance computing environments, the RISC-V Processor Core is praised for its energy-efficient computing capabilities and reduced power consumption, characteristics that are vital in creating sustainable and environmentally friendly tech solutions. Its adaptability into various system-on-chip (SoC) designs makes it integral to the development of a broad spectrum of devices, from consumer electronics to industrial automation systems.
The IP Platform for Low-Power IoT is engineered to accelerate product development with highly integrated, customizable solutions specifically tailored for IoT applications. It consists of pre-validated IP platforms that serve as comprehensive building blocks for IoT devices, featuring ARM and RISC-V processor compatibility. Built for ultra-low power consumption, these platforms support smart and secure application needs, offering a scalable approach for different market requirements. Whether it's for beacons, active RFID, or connected audio devices, these platforms are ideal for various IoT applications demanding rapid development and integration. The solutions provided within this platform are not only power-efficient but also ready for AI implementation, enabling smart, AI-ready IoT systems. With FPGA evaluation mechanisms and comprehensive integration support, the IP Platform for Low-Power IoT ensures a seamless transition from concept to market-ready product.
Tailored for high efficiency, the NMP-550 accelerator advances performance in the fields of automotive, mobile, AR/VR, and more. Designed with versatility in mind, it finds applications in driver monitoring, video analytics, and security through its robust capabilities. Offering up to 6 TOPS of processing power, it includes up to 6 MB of local memory and a choice of RISC-V or Arm Cortex-M/A 32-bit CPU. In environments like drones, robotics, and medical devices, the NMP-550's enhanced computational skills allow for superior machine learning and AI functions. This is further supported by its ability to handle comprehensive data streams efficiently, making it ideal for tasks such as image analytics and fleet management. The NMP-550 exemplifies how AiM Future harnesses cutting-edge technology to develop powerful processors that meet contemporary demands for higher performance and integration into a multitude of smart technologies.
The RFicient chip is a cutting-edge technology designed to optimize power usage in IoT applications. This ultra-low-power receiver is ideal for environments requiring long-term battery operation, such as remote sensors in industrial IoT setups. With its efficient energy harvesting capabilities, the RFicient chip is pivotal in advancing sustainable technology solutions, reducing power consumption within the Internet of Things (IoT) framework.
The xcore-200 chip from XMOS is a pivotal component for audio processing, delivering unrivaled performance for real-time, multichannel streaming applications. Tailored for professional and high-resolution consumer audio markets, xcore-200 facilitates complex audio processing with unparalleled precision and flexibility. This chip hosts XMOS's adept capabilities in deterministic and parallel processing, crucial for achieving zero-latency outputs in applications such as voice amplification systems, high-definition audio playback, and multipoint conferencing. Its architecture supports complex I/O operations, ensuring that all audio inputs and outputs are managed efficiently without sacrificing audio quality. The xcore-200 is crafted to handle large volumes of data effortlessly while maintaining the highest levels of integrity and clarity in audio outputs. It provides superior processing power to execute intensive tasks such as audio mixing, effects processing, and real-time equalization, crucial for both consumer electronics and professional audio gear. Moreover, xcore-200 supports a flexible integration into various systems, enhancing the functionality of audio interfaces, smart soundbars, and personalized audio solutions. It also sustains the robust performance demands needed in embedded AI implementations, thereby extending its utility beyond traditional audio systems. The xcore-200 is a testament to XMOS's dedication to pushing the boundaries of what's possible in audio engineering, blending high-end audio performance with cutting-edge processing power.
The NX Class RISC-V CPU IP by Nuclei is characterized by its 64-bit architecture, making it a robust choice for storage, AR/VR, and AI applications. This processing unit is designed to accommodate high data throughput and demanding computational tasks. By leveraging advanced capabilities, such as virtual memory and enhanced processing power, the NX Class facilitates cutting-edge technological applications and is adaptable for integration into a vast array of high-performance systems.
A robust platform offering a full spectrum of ARM Cortex-M microprocessors, perfect for integration across a broad scope of systems. These ASICs are finely tuned to accommodate various applications, demonstrating commendable performance in areas such as IoT, industrial automation, and consumer electronics. Known for their reliability and scalability, these ASICs enhance system capabilities by providing customizable features that match exclusive client criteria.
The Origin E1 is a compact yet powerful neural processing unit (NPU) designed for low-power applications in home appliances, smartphones, and security cameras. Specially tailored for always-on functions, the E1 offers unmatched power efficiency by utilizing Expedera's innovative packet-based architecture. This allows it to execute multiple layers in parallel, ensuring the optimal balance of performance and resource utilization. Engineered to operate with minimal to no external memory, the Origin E1 is ideal for cost-effective and area-sensitive designs. The LittleNPU processor within it is fine-tuned for sophisticated neural networks needed in always-sensing applications, maintaining privacy by keeping data on-board. This makes the E1 a robust choice for devices requiring dedicated AI processing without the penalty of high power consumption or large silicon area. In terms of technical specifications, the Origin E1 boasts a performance efficiency of up to 18 TOPS per Watt, with the capability to run various network types such as CNNs, RNNs, and DNNs. Its adaptability allows clients to customize features to meet specific needs, guaranteeing efficient deployments across numerous devices. The E1 leverages a full TVM-based software stack for seamless integration, further endorsing its versatility and effectiveness.
The ARC Processor by Synopsys offers a versatile and scalable processing solution that caters to diverse applications, from consumer electronics to high-end autonomous systems. Renowned for its customizable architecture, the ARC Processor allows developers to tailor features to meet specific application needs, optimizing both performance and power consumption. This processor IP is designed with a focus on high efficiency and flexibility, offering a rich set of features that enable seamless integration into complex SoCs. It supports a wide variety of processing tasks, including complex computational algorithms, real-time processing, and power-sensitive tasks. This scalability makes the ARC Processor suitable for a broad spectrum of markets, including automotive, mobile, and internet of things (IoT) applications. With its advanced design, the ARC Processor provides exceptional processing capabilities while maintaining low power requirements, making it ideal for battery-operated devices. By delivering efficient execution and high processing throughput, this processor empowers designers to create innovative solutions that meet demanding performance criteria.
The memBrain™ Neuromorphic Memory is a groundbreaking technology tailored for AI applications. Designed to efficiently move AI processing from cloud environments to edge devices, this memory technology excels in its power efficiency, making it suitable for battery-powered, deeply embedded devices. This innovation is crucial for applications such as video and voice recognition, where low-latency processing at the edge is vital. memBrain™ technology supports the growing demand for AI at the edge, providing significant power savings and reducing the Bill of Materials (BOM) costs for deploying AI functionalities. As AI workloads proliferate, the energy-efficient characteristics of memBrain™ make it ideal for a variety of edge devices that require not only performance but also sustainability. Since its introduction in 2017, memBrain™ has been adopted by several companies looking to enhance their edge AI computing capabilities. Its neural network-inspired architecture allows it to process data in a manner akin to the human brain, enabling more efficient learning and potent AI inference directly within devices.
The Chimera SDK is an advanced software suite designed to enhance the development and deployment of AI models on Quadric's Chimera processors. It provides a complete environment where developers can simulate, profile, and deploy applications using a code-driven approach that embraces both traditional C++ and modern machine learning models. This SDK simplifies the AI model preparation for the Chimera GPNPU by providing tool-driven processes that require no network adjustments or operator substitutions. The Quadric Chimera SDK is adept at transforming ONNX graphs derived from popular training platforms like TensorFlow and PyTorch into optimized C++ code that can be directly executed on Chimera processors. By integrating graph compiler capabilities and LLVM-based code optimization, the SDK empowers developers to fully exploit the hardware capabilities of Chimera, ensuring efficient and streamlined execution of diverse AI workloads. This toolkit supports deployment on private cloud or on-premise systems, further enhancing its flexibility for varied developmental needs.
The SEMIFIVE AIoT Platform is designed to seamlessly integrate artificial intelligence and IoT functionalities into a single custom silicon framework. This platform offers a comprehensive ecosystem that supports smart device manufacturing and deployment by leveraging pre-verified IP cores tailored for AIoT applications. By employing advanced design methodologies, the platform provides extensive connectivity options and adaptable processing cores suited for edge computing. This facilitates real-time data processing and decision-making at the device level, enhancing the efficiency and responsiveness of AIoT systems. With its robust framework, the platform minimizes design complexity and accelerates product development cycles, allowing industries to swiftly innovate within the AIoT space. Its scalable architecture supports a wide range of AIoT applications, ensuring interoperability and seamless operation across diverse technology environments.
Nuclei's U Class RISC-V CPU IP represents a versatile computing solution engineered to handle complex processing tasks. With a 32-bit architecture augmented by a Memory Management Unit (MMU), this class is optimized for Linux environments and excels in edge computing applications. Featuring extensive configuration options, the U Class processor ensures adaptability to varied computing demands, facilitating efficient task execution across diverse scenarios.
Tensix Neo represents a groundbreaking leap in AI processing, purpose-built to optimize specific AI workloads with outstanding performance-per-watt efficiency. The platform delivers adaptable solutions to AI developers, facilitating rapid acceleration of AI networks and applications. Designed with a sophisticated Network-on-Chip (NoC), Tensix Neo ensures comprehensive connectivity and scalability to accommodate an expanding array of AI models, allowing developers to match pace with swift industry changes. It supports diverse precision formats and is engineered for seamless interaction with emerging technologies, maintaining flexibility to cater to AI-driven advancements.
The TSP1 Neural Network Accelerator by Applied Brain Research is a groundbreaking AI chip engineered to enhance processing power and efficiency for time series data. Utilizing state-of-the-art neural network capabilities, it facilitates natural voice interfaces and advanced bio-signal classification within compact battery-powered devices. The TSP1 ensures fully self-contained processing across multiple network setups, handling diverse voice and sensor signal applications with low power consumption. This chip is revolutionary in its ability to perform high-efficiency neural network operations while sustaining ultra-low energy usage. The integrated DC-DC supply supports a range of power options, ensuring adaptability across various applications like wearables and smart home technologies. Moreover, its architecture offers robust AI inference with minimal latency, making it a prime choice for those aiming to incorporate efficient AI processing into edge devices. Technically, the TSP1 supports up to four stereo audio inputs and features secure on-chip storage, empowering devices to execute complex AI functions with great fidelity. Its compact packaging options make it suitable for a host of applications, ensuring seamless integration in environments where space and power efficiency are critical. This AI chip stands out in the market for its ability to offer comprehensive AI capabilities while remaining highly efficient and low-cost, promising transformative impacts across multiple sectors.
The TimbreAI T3 is meticulously designed to cater to ultra-low-power AI applications, notably in audio devices like headsets. Providing optimal noise reduction capabilities, the T3 performs efficient AI inference while utilizing minimal power, making it ideal for power-constrained environments. This AI engine achieves superior audio processing through 3.2 billion operations per second, while consuming less than 300 microWatts of power. The TimbreAI T3 supports full deployment across leading silicon processes, delivering seamless integration as soft IP to enhance audio experiences without extensive power requirements. With its focus on minimal footprint and maximized efficiency, the TimbreAI T3 allows developers to deploy neural networks without altering trained models, ensuring high accuracy and performance in tiny devices. Its flexibility and proven field deployment further solidify its credentials as a leading solution for the mobile audio market.
The Y8002 is a processor that replicates the functionalities of a well-known Zilog chip, consisting of approximately 15,000 gates. This processor serves as an efficient solution for applications that rely on Zilog architecture, providing a drop-in replacement or the foundation for new designs requiring these familiar instructions. Integrating the Y8002 into a system allows for the seamless transition from legacy to modern technological environments, preserving investments in existing infrastructure while leveraging performance improvements inherent in Systemyde's designs. Its silicon-proven status ensures that it meets industrial reliability standards, further endorsing its application in mission-critical environments. Systemyde supports the Y8002 with an extensive array of design resources, ensuring that each deployment is well-verified and reliable, contributing positively to the development of robust embedded systems that demand legacy compatibility and forward-facing performance.
The Avispado core by Semidynamics is a highly efficient, in-order RISC-V processor optimized for energy-conscious applications, such as AI edge computing and IoT devices. Its 64-bit architecture supports in-order execution and is particularly notable for its energy efficiency, making it suitable for power-sensitive environments. Avispado is designed to manage two instruction widths, which enhances its flexibility and scalability for embedded systems and AI workload implementations. Avispado features the integration of Semidynamics’ Gazzillion Misses™ technology, ensuring high-bandwidth access by efficiently managing up to 64 simultaneous memory requests. This high data throughput capability makes it ideal for edge AI applications where rapid data processing is essential. Additionally, Avispado is vector-ready, supporting RISC-V’s Vector Specification 1.0, which facilitates AI acceleration in applications such as machine learning and embedded computing. This core is also built to support multiprocessing, allowing scalability to multicore implementations. With compatibility for Linux environments, Avispado expands its usability scope into more traditional computing environments that leverage open-source platforms for development and deployment. Its branch predictor and various customizable options make it a versatile choice for integrators seeking a robust solution within a highly adaptable processor design.
Targeting high-performance demands, the Origin E8 is built for sectors requiring robust AI capabilities, such as data centers and autonomous driving. It accommodates demanding applications for real-time processing tasks, offering up to 128 TOPS in a single core configuration. The E8 expedites complex AI workloads with its advanced packet-based architecture that enhances efficiency through concurrent multi-layer execution. The scalable design of the Origin E8 enables its use in diverse contexts, managing multiple AI networks simultaneously with minimal latency. Expedera's solution addresses the architectural needs of sectors where performance, area, and power efficiency are paramount, providing competitive advantages through optimal configuration. Including a comprehensive suite of development tools like a compiler, scheduler, and quantizer, the Origin E8 facilitates straightforward integration and adaptation to various AI models, thereby ensuring it can meet a broad range of application scenarios.
The Y90 processor is a high-performance microprocessor implementation of the Zilog Z180 architecture, featuring gate configurations of either 10,000 or 17,000. It enhances the traditional Z180 CPU capabilities through superior design adjustments to achieve improved processing performance. Designed for systems requiring rapid and efficient instruction execution, the Y90 is ideal for use in applications where high throughput and speedy data handling are critical. Its versatile architecture supports a wide range of technological environments, from legacy systems needing upgrades to modern platforms seeking reliable processing solutions. Backed by Systemyde's extensive design toolset, the Y90 includes a synthesizable model and rigorous verification processes that ensure operational reliability across diverse implementations. Its high-performance attributes and compatibility make it an excellent choice for systems demanding quick and dependable microprocessor functions.
The Y180S, with approximately 10,000 gates, is an advanced iteration of the Y180, designed for applications requiring a safe-state operation. It retains full compatibility with the Zilog Z180 CPU architecture while integrating additional features that support enhanced reliability and operational safety. This processor is particularly suitable for systems where robust error handling and fault tolerance are paramount, seamlessly fitting into environments that demand high reliability. Its architecture facilitates integration into existing infrastructures, maintaining alignment with Z180-compatible systems while offering improved safety mechanisms. Accompanied by a full suite of design support, the Y180S allows developers to achieve stringent operational goals while advancing the performance and reliability expected from Systemyde’s microprocessor series. Its combination of legacy architecture and modern enhancements positions the Y180S as a versatile choice for critical applications.
The Origin E2 NPU is engineered for power-sensitive devices requiring on-device AI processing. Suitable for smartphones and edge nodes, it supports various AI models and balances performance with low power consumption. By utilizing Expedera's packet-based architecture, the E2 achieves high efficiency and effective resource utilization, facilitating parallel execution across multiple layers to enhance computational throughput. The E2 is highly adaptable, supporting a broad performance range from 1 to 20 TOPS, making it well-suited for running neural networks like RNN, LSTM, CNN, and DNN without the need for hardware-specific modifications. This ensures seamless integration for customers looking to leverage their existing trained models. Equipped with a full TVM-based software stack, the Origin E2 simplifies network deployment while offering excellent customization capabilities to meet specific application requirements. Its design emphasizes field-proven reliability with its inclusion in over 10 million consumer devices globally.
Join the world's most advanced semiconductor IP marketplace!
It's free, and you'll get all the tools you need to discover IP, meet vendors and manage your IP workflow!
No credit card or payment details required.
Join the world's most advanced AI-powered semiconductor IP marketplace!
It's free, and you'll get all the tools you need to advertise and discover semiconductor IP, keep up-to-date with the latest semiconductor news and more!
Plus we'll send you our free weekly report on the semiconductor industry and the latest IP launches!