The QDID PUF is an innovative hardware experience designed to generate a unique cryptographic identity through quantum tunneling current variations. Utilizing standard CMOS processes, it taps into randomness deriving from oxide thickness variations and defect distribution in gate oxide, creating a robust hardware root-of-trust. This enables the establishment of secure architectures by providing on-the-fly identity generation that does not rely on memory storage, making it resistant to side-channel and machine learning attacks.
The QDID PUF is especially noteworthy for its high entropy seed generation, supporting customizable security strengths up to 256 bits, and is designed with built-in resistance against secret leakage through advanced countermeasures. The technology is thoroughly tested under diverse environmental conditions, consistently maintaining reliability and longevity, and has achieved extensive verification across major fabs including TSMC, GF, and UMC across various process nodes in Bulk CMOS, FDSOI, and FinFET technologies.
It enables key generation and device authentication, serving as a cornerstone for secure provisioning and post-quantum cryptography, thus supporting various applications in device identification, supply chain security, and more. Successfully verified under NIST standards, QDID PUF ensures excellent performance across voltage, temperature, and ageing tests, offering a robust solution for future-proof IoT device integration.