Is this your business? Claim it to manage your IP and profile
The MVPM100 series encapsulates the precision of traditional particulate measurement in a miniaturized form factor. It uses cutting-edge microsystem technology to bring gravimetric sensor precision to compact devices, directly measuring the weight of particles versus relying on optical methods. This innovative approach offers more accurate particle mass readings, ideal for diverse applications, from air quality monitoring to industrial processes. The sensors cover a measurement range of 0 to 1000 µg/m3 with an impressive accuracy of 10 µg/m3. They operate over a broad temperature spectrum from -10°C to 65°C, accommodating various environmental challenges. Power needs are efficiently managed with an idle current of 200 µA and active consumption reaching 40 mA for one measurement per second. With a versatile interface supporting both I2C and UART protocols, the MVPM100 sensors are highly suitable for electronic systems that demand high precision and low power. Their small size (25 x 25 x 15 mm) makes them highly integrable into existing systems without requiring substantial real estate on PCBs.
The MVDP2000 series represents MEMS Vision's advanced offering in differential pressure sensing, employing a proprietary capacitive sensing technology. These sensors are digitally calibrated across both pressure and temperature ranges, making them ideal for applications demanding high sensitivity, speed, and efficiency, such as medical, HVAC, and filter monitoring systems. The sensors are characterized by a quick response time of down to 1.0 ms and a substantial measurement range of ±5 kPa to ±10 kPa. They ensure precise readings with a total error band of less than 1.0 %FS and permit integration in a wide array of environmental conditions, from -40°C to 85°C. The compact 7 x 7 mm DFN package ensures easy deployment in constrained spaces. With digital I2C as well as analog output modes, the MVDP2000 sensors are highly adaptable to various system requirements. Despite their advanced capabilities, these sensors maintain a low power profile with a current consumption of just 2.85 µA at one measurement per second, making them suitable for battery-powered applications.
The MVUM1000 represents MEMS Vision's leading-edge innovation in ultrasound technology for medical imaging. This compact 256-element linear ultrasound array is designed using state-of-the-art capacitive micromachined ultrasound transducers (CMUTs), allowing for exceptional integration with interface electronics. Known for its energy efficiency and high sensitivity, the MVUM1000 delivers precise acoustic pressure detection, crucial for advanced imaging techniques. Supporting multiple imaging modes such as time-of-flight and Doppler, it is highly suited for applications ranging from point-of-care to cart-based ultrasound systems. The MVUM1000 array, with its 4.5 MHz center frequency and up to 256 elements, strikes a balance between fine resolution and powerful imaging capabilities, critical for medical diagnostics. The array's flexible design includes features like integrated front-end electronics and adjustable voltage inputs, enhancing its versatility in various contexts. Such capabilities not only improve imaging clarity but also support quick deployment in medical devices, further solidifying MEMS Vision's role in medical sensor innovation.
The MVH4000 series from MEMS Vision provides high-precision, fully calibrated sensors specifically designed for humidity and temperature measurements. These sensors are crafted using advanced Silicon Carbide MEMS technology, which ensures robust performance and excellent long-term stability. Their rapid response time and minimal power consumption make them ideal for applications where space is at a premium. MEMS Vision has equipped these sensors with on-chip calibration, facilitating easy integration and plug-and-play operation in industrial, consumer, medical, and automotive fields. One of the standout features of the MVH4000 series is its low power consumption, with current use as low as 0.62 µA. This extends battery life significantly, making the sensors suited for portable devices. Their compact size (2.5 x 2.5 x 0.9 mm) makes them ideal where PCB space is critical. The sensors maintain high accuracy, with RH precision of ±1.5% and temperature accuracy of ±0.2°C, alongside a fast RH response time of less than 4 seconds. The sensors are available in both digital and analog outputs, catering to various design requirements. Evaluation kits and modules can also be procured for testing and integration purposes. With a broad operating temperature range from -40°C to 125°C, these sensors prove to be exceptionally versatile for myriad applications.
Designed for precision and reliability, the MVT4000D series of digital temperature sensors by MEMS Vision are ideal for high-accuracy applications. Utilizing their proprietary Silicon Carbide MEMS technology, these sensors deliver excellent stability and rapid response times. With a focus on minimizing power usage, they offer a perfect solution for battery-operated and portable devices, ensuring longevity and efficiency. The MVT4000D sensors boast an incredibly low power consumption of less than 0.18 µA, which significantly extends battery life, making them suitable for sensitive applications. Their high accuracy, typified by a temperature precision of ±0.2°C, supports tighter process control across a working range of -40°C to 125°C. Available with on-chip calibration, they are ready for immediate integration, supporting a range of industrial and consumer applications. Built with a small form factor (2.5 x 2.5 x 0.9 mm), these sensors are perfect where space is constrained. The sensors support digital I2C interfaces facilitating seamless connectivity in complex systems. The variations within the MVT4000D series allow for different accuracy grades, accommodating various budgetary and technical needs.
The MVWS4000 series combines humidity, pressure, and temperature sensing in a singular compact module, making it ideal for weather monitoring and other multi-sensor applications. These digital sensors are crafted with Silicon Carbide technology, offering reliability with minimal power demand, which is essential for battery-powered applications and original equipment manufacturers (OEM). Each sensor in the series delivers rapid and accurate environmental measurements, with humidity accuracy at ±1.5%, pressure accuracy to within ±1.0 hPa, and temperature precision of ±0.3°C. Their long-term stability and low current consumption underpin their lasting performance in critical systems. Operating within an extensive range—0 to 100 %RH, 300 to 1100 hPa, and -40°C to 85°C—they suit various environmental conditions and applications. Available in different accuracy specifications, these sensors ensure flexibility to meet distinct requirements and budgets. The small footprint (2.5 x 2.5 x 0.91 mm) allows them to be implemented in space-sensitive applications effectively, while the digital I2C and SPI output options provide easy integration with existing systems.
Join the world's most advanced semiconductor IP marketplace!
It's free, and you'll get all the tools you need to discover IP, meet vendors and manage your IP workflow!
No credit card or payment details required.
Join the world's most advanced AI-powered semiconductor IP marketplace!
It's free, and you'll get all the tools you need to advertise and discover semiconductor IP, keep up-to-date with the latest semiconductor news and more!
Plus we'll send you our free weekly report on the semiconductor industry and the latest IP launches!
To evaluate IP you need to be logged into a buyer profile. Select a profile below, or create a new buyer profile for your company.