All IPs > Wireless Communication > 802.16 / WiMAX
The 802.16/WiMAX category in our semiconductor IP catalog offers cutting-edge solutions tailored for robust wireless communication. WiMAX (Worldwide Interoperability for Microwave Access) is a technology based on the IEEE 802.16 standard designed to provide high-speed broadband access over a large area. Semiconductor IPs in this category are essential for developing systems that need to ensure reliable, high-bandwidth connectivity, making them ideal for both urban and rural settings where traditional broadband may not reach.
802.16/WiMAX semiconductor IPs are instrumental in the creation of efficient and scalable networks. They facilitate the transmission of data over long distances without the need for physical cabling, which is particularly advantageous in regions with challenging terrain or sparse infrastructure. This technology supports a range of applications including mobile backhaul, fixed wireless access, and even vehicular network connectivity. Products in this category include baseband processors, radio frequency transceivers, and complete system-on-chip (SoC) solutions that ensure seamless integration with existing communication frameworks.
Developing 802.16/WiMAX solutions involves adopting advanced modulation technologies and multiple input multiple output (MIMO) capabilities, which help in maximizing throughput and spectrum efficiency. The semiconductor IPs available in this category are designed to meet industry standards for performance and reliability, thereby enabling manufacturers to create devices that deliver consistent service quality in various environmental conditions. These IPs are crucial for companies aiming to broaden their market reach by providing high-speed internet access to underserved and unconnected areas globally.
In summary, the 802.16/WiMAX semiconductor IPs category is a vital component for developers looking to harness the potential of broadband wireless technology. By integrating these IPs into their products, companies can offer scalable and efficient connectivity solutions that cater to a wide array of use cases. Whether it's for urban connectivity improvement or expanding access in remote locations, the solutions offered in this category are key to overcoming the digital divide and driving future innovations in wireless technology.
Convolutional FEC codes are very popular because of their powerful error correction capability and are especially suited for correcting random errors. The most effective decoding method for these codes is the soft decision Viterbi algorithm. ntVIT core is a high performance, fully configurable convolutional FEC core, comprised of a 1/N convolutional encoder, a variable code rate puncturer/depuncturer and a soft input Viterbi decoder. Depending on the application, the core can be configured for specific code parameters requirements. The highly configurable architecture makes it ideal for a wide range of applications. The convolutional encoder maps 1 input bit to N encoded bits, to generate a rate 1/N encoded bitstream. A puncturer can be optionally used to derive higher code rates from the 1/N mother code rate. On the encoder side, the puncturer deletes certain number of bits in the encoded data stream according to a user defined puncturing pattern which indicates the deleting bit positions. On the decoder side, the depuncturer inserts a-priori-known data at the positions and flags to the Viterbi decoder these bits positions as erasures. The Viterbi decoder uses a maximum-likelihood detection recursive process to cor-rect errors in the data stream. The Viterbi input data stream can be composed of hard or soft bits. Soft decision achieves a 2 to 3dB in-crease in coding gain over hard-decision decoding. Data can be received continuously or with gaps.
The Ncore Cache Coherent Interconnect from Arteris is engineered to overcome challenges associated with multicore SoC designs. It delivers high-bandwidth, low-latency interconnect fabric enhancing communication efficiency across various SoC components and multiple dies. Designed to ensure reliable performance and scalability, this coherent NoC addresses complex tasks by implementing heterogeneous coherency, and it is scalable from small embedded systems to extensive multi-die designs. Ncore promotes effective cache management, providing full coherency for processors and I/O coherency for accelerators. It supports various coherency protocols including CHI-E and ACE, and comes with ISO 26262 certification, meeting stringent safety standards in automotive environments. The inherent AMBA support allows seamless integration with existing and new SoC infrastructures, enhancing data handling efficiency. By offering automated generation of diagnostic analysis and fault modes, Ncore aids developers in creating secure systems ready for advanced automotive and AI applications, thereby accelerating their time-to-market. Its configurability and extensive protocol support position it as a trusted choice for industries requiring flexible and robust system integration solutions.
ntRSD core implements a time-domain Reed-Solomon decoding algorithm. The core is parameterized in terms of bits per symbol, maximum codeword length and maximum number of parity symbols. It also supports varying on the fly shortened codes. Therefore any desirable code-rate can be easily achieved rendering the decoder ideal for fully adaptive FEC applications. ntRSD core supports erasure decoding thus doubling its error correction capability. The core also supports continuous or burst decoding. The implementation is very low latency, high speed with a simple interface for easy integration in SoC applications.
A trailblazer in high-speed rail connectivity, LightningBlu offers a groundbreaking, track-to-train multi-gigabit mmWave solution. This technology is renowned for its seamless integration with train networks, providing stable and fast connections crucial for high-speed transport. LightningBlu operates efficiently over a rail-friendly frequency range from 57-71 GHz and delivers an impressive data throughput of up to 3.5 Gbps. The system comprises both trackside and train-top nodes, each featuring innovative two-sector radios to ensure continuous, dynamic connection between the train and the trackside infrastructure. The design includes components qualified for rugged rail environments, promising extended service life and low maintenance needs. The solution significantly boosts operational efficiency for rail networks, being deployed in key infrastructures like South Western Railways and Caltrain in Silicon Valley. Versatile and resilient, LightningBlu adapts to varied complexities found in high-speed transport contexts. It communicates data faster than 5G while maintaining lower power consumption than traditional mobile networks, ensuring a superior commuter experience through its reliability and speed.
The RWM6050 is a power-efficient baseband modem designed for high-capacity mmWave communication, ideal for market segments that require cost-effective and high-performance solutions. Developed in partnership with Renesas, this modem pairs seamlessly with mmWave RF chipsets to provide a highly configurable radio interface suitable for access and backhaul applications. Equipped with flexible channelisation and modulation coding capabilities, the RWM6050 can scale bandwidth to support multi-gigabit data transfers, boasting dual modem features and a mixed-signal front-end. This flexible architecture supports versatile deployment scenarios, enabling robust and high-speed connectivity over moderate distances. The RWM6050’s beamforming capabilities, enhanced by a phased array antenna, and advanced digital front-end processing, make it ideal for sophisticated data links. The modem integrates network synchronization and provides programmable real-time scheduling, affirming its role as a pivotal element in delivering reliable mmWave communication.
The transceiver is designed to be used together with an RF tuner, and ADC/DAC converters. The system has internal state machine to control the operation, and can be externally configured via the SPI interface. This design is a Mobile WiMAX baseband transceiver core for both Base station and Mobile station, supplied as a portable and synthesizable Verilog-2001 IP. The system was designed to be used in conjunction with a standard RF tuner. The operation of the transceiver is automated by a master finite state machine.
Under its eSi-Comms brand, EnSilica delivers a suite of highly parameterized communications IP solutions that play a crucial role in supporting modern communication standards such as 4G, 5G, Wi-Fi, and DVB. These IP blocks are designed to streamline the development of ASIC designs by providing a robust platform for OFDM-based modem solutions. The IP suite features advanced DSP algorithms for synchronization, equalization, demodulation, and channel decoding, ensuring robust communication links. It's optimized for integration into systems requiring flexibility and high performance.
ntRSE core implements the Reed Solomon encoding algorithm and is parameterized in terms of bits per symbol, maximum codeword length and maximum number of parity symbols. It also supports varying on the fly shortened codes. Therefore any desirable code-rate can be easily achieved rendering the decoder ideal for fully adaptive FEC applications. ntRSE core supports continuous or burst decoding. The implementation is very low latency, high speed with a simple interface for easy integration in SoC applications.
In channel coding redundancy is inserted in the transmitted information bit-stream. This redundant information is used in the decoder to eliminate the channel noise. The error correction capability of a FEC system strongly depends on the amount of redundancy as well as on the coding algorithm itself. TPCs perform well in the moderate to high SNRs because the effect of error floor is less. As TPCs have more advantage when a high rate code is used, they are suitable for commercial applications in wireless and satellite communications. The ntTPC Turbo Product Codec IP core is consisted of the Turbo Product Encoder (ntTPCe) and the Turbo Product Decoder (ntTPCd) blocks. The product code C is derived from two/three constituent codes, namely C1, C2 and optionally C3. The information data is encoded in two/three dimensions. Every row of C is a code of C2 and every column of C is a code of C1. When the third coding dimension is enabled, then there are C3 C1*C2 data planes. The ntTPC core supports both e-Hamming and Single Parity Codes as the constituent codes. The core also supports shortening of rows or columns of the product table, as well as turbo shortening. Shortening is a way of providing more powerful codes by removing information bits from the code. The ntTPCe core receives the information bits row by row from left to right and transmits the encoded bits in the same order. It consists of a row, column and 3D encoder. The ntTPCd decoder receives soft information from the channel in the 2’s complement number system and the input samples are received row by row from left to right. The implemented decoding algorithm computes the extrinsic information for every dimension C1, C2, C3 by iteratively decoding words that are near the soft-input word. An advanced scalable and parametric design approach produces custom design versions tailored to end customer applications design tradeoffs.
Cobalt is an ultra-low-power GNSS receiver designed specifically for chipset integration to expand the market capabilities of IoT System-on-Chip (SoC) products. This GNSS receiver stands out for its ability to drastically reduce energy consumption while maintaining high performance in geolocation tasks. This makes Cobalt an ideal choice for IoT applications where battery life is critical, such as in wearable technology and remote asset tracking devices. By integrating Cobalt into chipsets, developers can enhance their products with robust and reliable GNSS functionalities without eliminating critical power resources, thus maintaining extended operational periods for their IoT devices. Cobalt's design caters to evolving needs in IoT infrastructures by supporting efficient satellite communication, essential for precise and reliable real-time location tracking. Its inclusion in SoC designs fosters the development of sophisticated IoT products capable of delivering real-time, accurate geolocation data, accelerating the integration of smart technologies across various sectors.
PhantomBlu represents Blu Wireless's state-of-the-art mmWave technology tailored for military and defense use. This advanced solution supports tactical communication between vehicles, whether on land, sea, or air, by leveraging a stealthy mesh network capable of running applications and IP networking over an anti-jam resistant infrastructure. The PhantomBlu network offers flexibility and scalability to meet various operational demands within defense environments, from securing critical infrastructure to enabling convoy communications and integrating airborne systems. Its ability to provide high bandwidth in real-time ensures communication is reliable and secure, even in complex and hostile environments. With features like 10x data rates compared to Wi-Fi and 5G, reduced size, weight, and power requirements, and future-proof scalability, PhantomBlu is built for seamless integration with existing military systems. The solution further offers long-range communication up to 4km, incorporating advanced features like antenna beamforming for improved signal processing, making it a robust component for military networks.
Blu Wireless's application software is a pivotal component of their mmWave solutions, providing robust support for data-intensive applications with a remarkable throughput of 3.5 Gbps. Compliant with the latest IEEE 802.11 standards, this software enables wireless mesh networking and efficient network management. The application software platform is designed with flexibility and programmability at its core, allowing for seamless integration and high performance across various deployment scenarios. It includes a comprehensive Network Management System (NMS), which offers a rich feature set for network health monitoring, configuration, and performance optimization. Another key aspect is the Mobile Connection Manager, a proprietary tool originally developed for rail applications and now adaptable for various high-speed environments. This software facilitates multi-link management and ensures robust mobility support, making it an essential asset for both conventional and demanding communications networks.
Join the world's most advanced semiconductor IP marketplace!
It's free, and you'll get all the tools you need to discover IP, meet vendors and manage your IP workflow!
No credit card or payment details required.
Join the world's most advanced AI-powered semiconductor IP marketplace!
It's free, and you'll get all the tools you need to advertise and discover semiconductor IP, keep up-to-date with the latest semiconductor news and more!
Plus we'll send you our free weekly report on the semiconductor industry and the latest IP launches!