Find IP Sell IP AI Assistant Chip Talk About Us
Log In

All IPs > Processor > Processor Cores

Semiconductor IPs for Processor Cores

Processor cores are fundamental components in central processing units (CPUs) and systems-on-chip (SoCs) for a myriad of digital devices ranging from personal computers and smartphones to more specialized equipment like embedded systems. Within the category of Processor Cores, you'll find a diverse selection of semiconductor IPs tailored to meet the varying demands of speed, power efficiency, and processing capability required by today's technology-driven world.

Our Processor Cores category provides an extensive library of semiconductor IPs, enabling designers to integrate powerful, efficient, and scalable cores into their projects. These IPs are essential for firms aiming to innovate and achieve a competitive edge within the fast-evolving tech landscape. Whether you're developing high-performance computing solutions or aiming for energy-efficient mobile gadgets, our processor core IP offerings are designed to support a wide range of architectures, from single-core microcontrollers to multi-core, multi-threaded processors.

One of the primary uses of processor core IPs is to define the architecture and functions of a core within a chip. These IPs provide the blueprint for building custom processors that can handle specific applications efficiently. They cover a broad spectrum of processing needs, including general-purpose processing, digital signal processing, and application-specific processing tasks. This flexibility allows developers to choose IPs that align perfectly with their product specifications, ensuring optimal performance and power usage.

In our Processor Cores category, you'll discover IPs suited for creating processors that power everything from wearables and IoT devices to servers and network infrastructure hardware. By leveraging these semiconductor IPs, businesses can significantly reduce time-to-market, lower development costs, and ensure that their products remain at the forefront of technology innovation. Each IP in this category is crafted to meet industry standards, providing robust solutions that integrate seamlessly into various technological environments.

All semiconductor IP
135
IPs available

Speedcore Embedded FPGA IP

Speedcore embedded FPGA (eFPGA) IP represents a notable advancement in integrating programmable logic into ASICs and SoCs. Unlike standalone FPGAs, eFPGA IP lets designers tailor the exact dimensions of logic, DSP, and memory needed for their applications, making it an ideal choice for areas like AI, ML, 5G wireless, and more. Speedcore eFPGA can significantly reduce system costs, power requirements, and board space while maintaining flexibility by embedding only the necessary features into production. This IP is programmable using the same Achronix Tool Suite employed for standalone FPGAs. The Speedcore design process is supported by comprehensive resources and guidance, ensuring efficient integration into various semiconductor projects.

Achronix
TSMC
All Process Nodes
Processor Cores
View Details

Speedster7t FPGAs

The Speedster7t FPGA family is crafted for high-bandwidth tasks, tackling the usual restrictions seen in conventional FPGAs. Manufactured using the TSMC 7nm FinFET process, these FPGAs are equipped with a pioneering 2D network-on-chip architecture and a series of machine learning processors for optimal high-bandwidth performance and AI/ML workloads. They integrate interfaces for high-paced GDDR6 memory, 400G Ethernet, and PCI Express Gen5 ports. This 2D network-on-chip connects various interfaces to upward of 80 access points in the FPGA fabric, enabling ASIC-like performance, yet retaining complete programmability. The product encourages users to start with the VectorPath accelerator card which houses the Speedster7t FPGA. This family offers robust tools for applications such as 5G infrastructure, computational storage, and test and measurement.

Achronix
TSMC
7nm
Processor Cores
View Details

Tianqiao-70 Low-Power Commercial Grade 64-bit RISC-V CPU

The Tianqiao-70 is engineered for ultra-low power consumption while maintaining robust computational capabilities. This commercial-grade 64-bit RISC-V CPU core presents an ideal choice for scenarios demanding minimal power usage without conceding performance. It is primarily designed for emerging mobile applications and devices, providing both economic and environmental benefits. Its architecture prioritizes low energy profiles, making it perfect for a wide range of applications, including mobile computing, desktop devices, and intelligent IoT systems. The Tianqiao-70 fits well into environments where conserving battery life is a priority, ensuring that devices remain operational for extended periods without needing frequent charging. The core maintains a focus on energy efficiency, yet it supports comprehensive computing functions to address the needs of modern, power-sensitive applications. This makes it a flexible component in constructing a diverse array of SoC solutions and meeting specific market demands for sustainability and performance.

StarFive
AI Processor, CPU, Multiprocessor / DSP, Processor Cores
View Details

AX45MP

The AX45MP is engineered as a high-performance processor that supports multicore architecture and advanced data processing capabilities, particularly suitable for applications requiring extensive computational efficiency. Powered by the AndesCore processor line, it capitalizes on a multicore symmetric multiprocessing framework, integrating up to eight cores with robust L2 cache management. The AX45MP incorporates advanced features such as vector processing capabilities and support for MemBoost technology to maximize data throughput. It caters to high-demand applications including machine learning, digital signal processing, and complex algorithmic computations, ensuring data coherence and efficient power usage.

Andes Technology
2D / 3D, ADPCM, CPU, IoT Processor, Processor Core Independent, Processor Cores, Vision Processor
View Details

GenAI v1

RaiderChip's GenAI v1 is a pioneering hardware-based generative AI accelerator, designed to perform local inference at the Edge. This technology integrates optimally with on-premises servers and embedded devices, offering substantial benefits in privacy, performance, and energy efficiency over traditional hybrid AI solutions. The design of the GenAI v1 NPU streamlines the process of executing large language models by embedding them directly onto the hardware, eliminating the need for external components like CPUs or internet connections. With its ability to support complex models such as the Llama 3.2 with 4-bit quantization on LPDDR4 memory, the GenAI v1 achieves unprecedented efficiency in AI token processing, coupled with energy savings and reduced latency. What sets GenAI v1 apart is its scalability and cost-effectiveness, significantly outperforming competitive solutions such as Intel Gaudi 2, Nvidia's cloud GPUs, and Google's cloud TPUs in terms of memory efficiency. This solution maximizes the number of tokens generated per unit of memory bandwidth, thus addressing one of the primary limitations in generative AI workflow. Furthermore, the adept memory usage of GenAI v1 reduces the dependency on costly memory types like HBM, opening the door to more affordable alternatives without diminishing processing capabilities. With a target-agnostic approach, RaiderChip ensures the GenAI v1 can be adapted to various FPGAs and ASICs, offering configuration flexibility that allows users to balance performance with hardware costs. Its compatibility with a wide range of transformers-based models, including proprietary modifications, ensures GenAI v1's robust placement across sectors requiring high-speed processing, like finance, medical diagnostics, and autonomous systems. RaiderChip's innovation with GenAI v1 focuses on supporting both vanilla and quantized AI models, ensuring high computation speeds necessary for real-time applications without compromising accuracy. This capability underpins their strategic vision of enabling versatile and sustainable AI solutions across industries. By prioritizing integration ease and operational independence, RaiderChip provides a tangible edge in applying generative AI effectively and widely.

RaiderChip
GLOBALFOUNDARIES, TSMC
28nm, 65nm
AI Processor, AMBA AHB / APB/ AXI, Audio Controller, Coprocessor, CPU, Ethernet, Microcontroller, Multiprocessor / DSP, PowerPC, Processor Core Dependent, Processor Cores
View Details

SCR9 Processor Core

Designed for entry-level server-class applications, the SCR9 is a 64-bit RISC-V processor core that comes equipped with cutting-edge features, such as an out-of-order superscalar pipeline, making it apt for processing-intensive environments. It supports both single and double-precision floating-point operations adhering to IEEE standards, which ensure precise computation results. This processor core is tailored for high-performance computing needs, with a focus on AI and ML, as well as conventional data processing tasks. It integrates an advanced interrupt system featuring APLIC configurations, enabling responsive operations even under heavy workloads. SCR9 supports up to 16 cores in a multi-cluster arrangement, each utilizing coherent multi-level caches to maintain rapid data processing and management. The comprehensive development package for SCR9 includes ready-to-deploy toolchains and simulators that expedite software development, particularly within Linux environments. The core is well-suited for deployment in entry-level server markets and data-intensive applications, with robust support for virtualization and heterogeneous architectures.

Syntacore
AI Processor, Coprocessor, CPU, Microcontroller, Processor Core Dependent, Processor Cores
View Details

Veyron V2 CPU

Ventana's Veyron V2 CPU represents the pinnacle of high-performance AI and data center-class RISC-V processors. Engineered to deliver world-class performance, it supports extensive data center workloads, offering superior computational power and efficiency. The V2 model is particularly focused on accelerating AI and ML tasks, ensuring compute-intensive applications run seamlessly. Its design makes it an ideal choice for hyperscale, cloud, and edge computing solutions where performance is non-negotiable. This CPU is instrumental for companies aiming to scale with the latest in server-class technology.

Ventana Micro Systems
AI Processor, CPU, Processor Core Dependent, Processor Cores
View Details

RV12 RISC-V Processor

The RV12 is a versatile, single-issue RISC-V compliant processor core, designed for the embedded market. With compliance to both RV32I and RV64I specifications, this core is part of Roa Logic's 32/64-bit CPU offerings. Featuring a Harvard architecture, it efficiently handles simultaneous instruction and data memory operations. The architecture is enhanced with an optimizing folded 4-stage pipeline, maximizing the overlap of execution with memory access to reduce latency and boost throughput. Flexibility is a cornerstone of the RV12 processor, offering numerous configuration options to tailor performance and efficiency. Users can select optional components such as branch prediction units, instruction and data caches, and a debug unit. This configurability allows designers to balance trade-offs between speed, power consumption, and area, optimizing the core for specific applications. The processor core supports a variety of standard software tools and comes with a full suite of development resources, including support for the Eclipse Integrated Development Environment (IDE) and GNU toolchain. The RV12 design emphasizes a small silicon footprint and power-efficient operation, making it ideal for a wide range of embedded applications.

Roa Logic BV
CPU, Cryptography Software Library, IoT Processor, Processor Cores
View Details

A25

The A25 processor model is a versatile CPU suitable for a variety of embedded applications. With its 5-stage pipeline and 32/64-bit architecture, it delivers high performance even with a low gate count, which translates to efficiency in power-sensitive environments. The A25 is equipped with Andes Custom Extensions that enable tailored instruction sets for specific application accelerations. Supporting robust high-frequency operations, this model shines in its ability to manage data prefetching and cache coherence in multicore setups, making it adept at handling complex processing tasks within constrained spaces.

Andes Technology
CPU, IoT Processor, Microcontroller, Processor Core Dependent, Processor Cores, Standard cell
View Details

Yitian 710 Processor

The Yitian 710 Processor is an advanced Arm-based server chip developed by T-Head, designed to meet the extensive demands of modern data centers and enterprise applications. This processor boasts 128 high-performance Armv9 CPU cores, each coupled with robust caches, ensuring superior processing speeds and efficiency. With a 2.5D packaging technology, the Yitian 710 integrates multiple dies into a single unit, facilitating enhanced computational capability and energy efficiency. One of the key features of the Yitian 710 is its memory subsystem, which supports up to 8 channels of DDR5 memory, achieving a peak bandwidth of 281 GB/s. This configuration guarantees rapid data access and processing, crucial for high-throughput computing environments. Additionally, the processor is equipped with 96 PCIe 5.0 lanes, offering a dual-direction bandwidth of 768 GB/s, enabling seamless connectivity with peripheral devices and boosting system performance overall. The Yitian 710 Processor is meticulously crafted for applications in cloud services, big data analytics, and AI inference, providing organizations with a robust platform for their computing needs. By combining high core count, extensive memory support, and advanced I/O capabilities, the Yitian 710 stands as a cornerstone for deploying powerful, scalable, and energy-efficient data processing solutions.

T-Head
AI Processor, AMBA AHB / APB/ AXI, Audio Processor, CPU, Microcontroller, Multiprocessor / DSP, Processor Core Independent, Processor Cores, Vision Processor
View Details

eSi-3250

The eSi-3250 32-bit RISC processor core excels in applications needing efficient caching structures and high-performance computation, thanks to its support for both instruction and data caches. This core targets applications where slower memory technologies or higher core/bus clock ratios exist, by leveraging configurable caches which reduce power consumption and boost performance. This advanced processor design integrates a wide range of arithmetic capabilities, supporting IEEE-754 floating-point functions and 32-bit SIMD operations to facilitate complex data processing. It uses an optional memory management unit (MMU) for virtual memory implementation and memory protection, enhancing its functional safety in various operating environments.

eSi-RISC
Intel Foundry, Samsung, TSMC, UMC
12nm, 16nm, 28nm
CPU, Microcontroller, Multiprocessor / DSP, Processor Cores
View Details

AndesCore Processors

AndesCore Processors offer a robust lineup of high-performance CPUs tailored for diverse market segments. Employing the AndeStar V5 instruction set architecture, these cores uniformly support the RISC-V technology. The processor family is classified into different series, including the Compact, 25-Series, 27-Series, 40-Series, and 60-Series, each featuring unique architectural advances. For instance, the Compact Series specializes in delivering compact, power-efficient processing, while the 60-Series is optimized for high-performance out-of-order execution. Additionally, AndesCore processors extend customization through Andes Custom Extension, which allows users to define specific instructions to accelerate application-specific tasks, offering a significant edge in design flexibility and processing efficiency.

Andes Technology
CPU, FlexRay, Processor Core Dependent, Processor Core Independent, Processor Cores, Security Processor
View Details

eSi-3200

The eSi-3200 is a versatile 32-bit RISC processor core that combines low power usage with high performance, ideal for embedded control applications using on-chip memory. Its structure supports a wide range of computational tasks with a modified-Harvard architecture that allows simultaneous instruction and data fetching. This design facilitates deterministic performance, making it perfect for real-time control. The eSi-3200 processor supports extensive arithmetic operations, offering optional IEEE-754 floating-point units for both single-precision and SIMD instructions which optimize parallel data processing. Its compatibility with AMBA AXI or AHB interconnects ensures easy integration into various systems.

eSi-RISC
Intel Foundry, Samsung, TSMC, UMC
12nm, 16nm, 28nm
CPU, Microcontroller, Multiprocessor / DSP, Processor Cores
View Details

eSi-1600

The eSi-1600 is a highly efficient 16-bit RISC processor core designed for applications that require low power and cost-effective solutions. Despite its 16-bit architecture, it offers performance akin to pricier 32-bit processors, making it an ideal choice for controlling functions in mature mixed-signal processes. The eSi-1600 is renowned for its power efficiency, running applications in fewer clock cycles compared to traditional 8-bit CPUs. Its instruction set includes 92 basic instructions and the capability for 74 user-defined ones, enhancing its adaptability. With support for a wide range of peripherals through AMBA AHB and APB buses, this core is versatile for various integration needs.

eSi-RISC
All Foundries, Samsung, TSMC, UMC
10nm, 16nm, 180nm
CPU, Microcontroller, Processor Cores
View Details

xcore.ai

The xcore.ai platform from XMOS is engineered to revolutionize the scope of intelligent IoT by offering a powerful yet cost-efficient solution that combines high-performance AI processing with flexible I/O and DSP capabilities. At its heart, xcore.ai boasts a multi-threaded architecture with 16 logical cores divided across two processor tiles, each equipped with substantial SRAM and a vector processing unit. This setup ensures seamless execution of integer and floating-point operations while facilitating high-speed communication between multiple xcore.ai systems, allowing for scalable deployments in varied applications. One of the standout features of xcore.ai is its software-defined I/O, enabling deterministic processing and precise timing accuracy, which is crucial for time-sensitive applications. It integrates embedded PHYs for various interfaces such as MIPI, USB, and LPDDR, enhancing its adaptability in meeting custom application needs. The device's clock frequency can be adjusted to optimize power consumption, affirming its cost-effectiveness for IoT solutions demanding high efficiency. The platform's DSP and AI performances are equally impressive. The 32-bit floating-point pipeline can deliver up to 1600 MFLOPS with additional block floating point capabilities, accommodating complex arithmetic computations and FFT operations essential for audio and vision processing. Its AI performance reaches peaks of 51.2 GMACC/s for 8-bit operations, maintaining substantial throughput even under intensive AI workloads, making xcore.ai an ideal candidate for AI-enhanced IoT device creation.

XMOS Semiconductor
20 Categories
View Details

SCR7 Application Core

The SCR7 is a 64-bit RISC-V application core crafted to meet high-performance demands of applications requiring powerful data processing. Featuring a sophisticated dual-issue pipeline with out-of-order execution, it enhances computational efficiency across varied tasks. The core is equipped with a robust floating-point unit and supports extensive RISC-V ISA extensions for advanced computing capabilities. SCR7's memory system includes L1 to L3 caches, with options for expansive up to 16MB L3 caching, ensuring data availability and integrity in demanding environments. Its multicore architecture supports up to eight cores, facilitating intensive computational tasks across industries such as AI and machine learning. Ideal for high-performance computing and big data applications, the SCR7 leverages its advanced interrupt systems and intelligent memory management for seamless operation. Comprehensive development resources, from simulators to SDKs, augment its integration across Linux-based systems, accelerating project development timelines.

Syntacore
AI Processor, CPU, IoT Processor, Microcontroller, Processor Cores
View Details

RISC-V Core-hub Generators

The RISC-V Core-hub Generators from InCore are tailored for developers who need advanced control over their core architectures. This innovative tool enables users to configure core-hubs precisely at the instruction set and microarchitecture levels, allowing for optimized design and functionality. The platform supports diverse industry applications by facilitating the seamless creation of scalable and customizable RISC-V cores. With the RISC-V Core-hub Generators, InCore empowers users to craft their own processor solutions from the ground up. This flexibility is pivotal for businesses looking to capitalize on the burgeoning RISC-V ecosystem, providing a pathway to innovation with reduced risk and cost. Incorporating feedback from leading industry partners, these generators are designed to lower verification costs while accelerating time-to-market for new designs. Users benefit from InCore's robust support infrastructure and a commitment to simplifying complex chip design processes. This product is particularly beneficial for organizations aiming to integrate RISC-V technology efficiently into their existing systems, ensuring compatibility and enhancing functionality through intelligent automation and state-of-the-art tools.

InCore Semiconductors
AI Processor, CPU, IoT Processor, Multiprocessor / DSP, Processor Core Dependent, Processor Core Independent, Processor Cores
View Details

Y180

The Y180 is a streamlined microprocessor design, incorporating approximately 8K gates and serving primarily as a CPU clone of the Zilog Z180. It caters to applications requiring efficient, compact processing power without extensive resource demands. Its design is particularly apt for systems that benefit from Z80 architecture compatibility, ensuring effortless integration and functionality within a variety of technological landscapes.

Systemyde International Corp.
CPU, IoT Processor, Microcontroller, Processor Cores
View Details

Avispado

The Avispado core is a 64-bit in-order RISC-V processor that provides an excellent balance of performance and power efficiency. With a focus on energy-conscious designs, Avispado facilitates the development of machine learning applications and is prime for environments with limited silicon resources. It leverages Semidynamics' innovative Gazzillion Misses™ technology to address challenges with sparse tensor weights, enhancing energy efficiency and operational performance for AI tasks. Structured to support multiprocessor configurations, Avispado is integral in systems requiring cache coherence and high memory throughput. It is particularly suitable for setups aimed at recommendation systems due to its ability to manage numerous outstanding memory requests, thanks to its advanced memory interface architectures. Integration with Semidynamics' Vector Unit enriches its offering, allowing dense computations and providing optimal performance in handling vector tasks. The ability to engage with Linux-ready environments and support for RISC-V Vector Specification 1.0 ensures that Avispado integrates seamlessly into existing frameworks, fostering innovative applications in fields like data centers and beyond.

Semidynamics
AI Processor, AMBA AHB / APB/ AXI, CPU, Microcontroller, Multiprocessor / DSP, Processor Core Dependent, Processor Cores, WMA
View Details

Veyron V1 CPU

The Veyron V1 CPU is designed to meet the demanding needs of data center workloads. Optimized for robust performance and efficiency, it handles a variety of tasks with precision. Utilizing RISC-V open architecture, the Veyron V1 is easily integrated into custom high-performance solutions. It aims to support the next-generation data center architectures, promising seamless scalability for various applications. The CPU is crafted to compete effectively against ARM and x86 data center CPUs, providing the same class-leading performance with added flexibility for bespoke integrations.

Ventana Micro Systems
AI Processor, Coprocessor, CPU, Processor Core Dependent, Processor Cores
View Details

eSi-3264

The eSi-3264 is a cutting-edge 32/64-bit processor core that incorporates SIMD DSP extensions, making it suitable for applications requiring both efficient data parallelism and minimal silicon footprint. Designed for high-accuracy DSP tasks, this processor's multifunctional capabilities target audio processing, sensor hubs, and complex arithmetic operations. The eSi-3264 processor supports sizeable instruction and data caches, which significantly enhance system performance when accessing slower external memory sources. With dual and quad MAC operations that include 64-bit accumulation, it enhances DSP execution, applying 8, 16, and 32-bit SIMD instructions for real-time data handling and minimizing CPU load.

eSi-RISC
Intel Foundry, Samsung, TSMC, UMC
12nm, 16nm, 28nm
CPU, DSP Core, Microcontroller, Multiprocessor / DSP, Processor Cores, Vision Processor
View Details

Dynamic Neural Accelerator II Architecture

The Dynamic Neural Accelerator (DNA) II offers a groundbreaking approach to enhancing edge AI performance. This neural network architecture core stands out due to its runtime reconfigurable architecture that allows for efficient interconnections between compute components. DNA II supports both convolutional and transformer network applications, accommodating an extensive array of edge AI functions. By leveraging scalable performance, it makes itself a valuable asset in the development of systems-on-chip (SoC) solutions. DNA II is spearheaded by EdgeCortix's patented data path architecture, focusing on technical optimization to maximize available computing resources. This architecture uniquely allows DNA II to maintain low power consumption while flexibly adapting to various task demands across diverse AI models. Its higher utilization rates and faster processing set it apart from traditional IP core solutions, addressing industry demands for more efficient and effective AI processing. In concert with the MERA software stack, DNA II optimally sequences computation tasks and resource distribution, further refining efficiency and effectiveness in processing neural networks. This integration of hardware and software not only aids in reducing on-chip memory bandwidth usage but also enhances the parallel processing ability of the system, catering to the intricate needs of modern AI computing environments.

EdgeCortix Inc.
AI Processor, Audio Processor, CPU, Cryptography Cores, Multiprocessor / DSP, Processor Core Dependent, Processor Core Independent, Processor Cores, Vision Processor
View Details

GenAI v1-Q

The GenAI v1-Q from RaiderChip brings forth a specialized focus on quantized AI operations, reducing memory requirements significantly while maintaining impressive precision and speed. This innovative accelerator is engineered to execute large language models in real-time, utilizing advanced quantization techniques such as Q4_K and Q5_K, thereby enhancing AI inference efficiency especially in memory-constrained environments. By offering a 276% boost in processing speed alongside a 75% reduction in memory footprint, GenAI v1-Q empowers developers to integrate advanced AI capabilities into smaller, less powerful devices without sacrificing operational quality. This makes it particularly advantageous for applications demanding swift response times and low latency, including real-time translation, autonomous navigation, and responsive customer interactions. The GenAI v1-Q diverges from conventional AI solutions by functioning independently, free from external network or cloud auxiliaries. Its design harmonizes superior computational performance with scalability, allowing seamless adaptation across variegated hardware platforms including FPGAs and ASIC implementations. This flexibility is crucial for tailoring performance parameters like model scale, inference velocity, and power consumption to meet exacting user specifications effectively. RaiderChip's GenAI v1-Q addresses crucial AI industry needs with its ability to manage multiple transformer-based models and confidential data securely on-premises. This opens doors for its application in sensitive areas such as defense, healthcare, and financial services, where confidentiality and rapid processing are paramount. With GenAI v1-Q, RaiderChip underscores its commitment to advancing AI solutions that are both environmentally sustainable and economically viable.

RaiderChip
TSMC
65nm
AI Processor, AMBA AHB / APB/ AXI, Audio Controller, Coprocessor, CPU, Ethernet, Microcontroller, Multiprocessor / DSP, PowerPC, Processor Core Dependent, Processor Cores
View Details

Ultra-Low-Power 64-Bit RISC-V Core

The Ultra-Low-Power 64-Bit RISC-V Core by Micro Magic, Inc. is engineered to operate efficiently with minimal power consumption, making it a standout solution for high-performance applications. This processor core is capable of running at an impressive 5GHz, yet it only consumes 10mW at 1GHz, illustrating its capability to deliver exceptional performance while keeping power usage to a minimum. Ideal for scenarios where energy efficiency is crucial, it leverages advanced design techniques to reduce voltage alongside high-speed processing. Maximizing power efficiency without compromising speed, this RISC-V core is suited for a wide array of applications ranging from IoT devices to complex computing systems. Its design allows it to maintain performance even at lower power inputs, a critical feature in sectors that prioritize energy savings and sustainability. The core's architecture supports full configurability, catering to diverse design needs across different technological fields. In addition to its energy-efficient design, the core offers robust computational capabilities, making it a competitive choice for companies looking to implement high-speed, low-power processing solutions in their product lines. The flexibility and power of this core accentuate Micro Magic's commitment to delivering top-tier semiconductor solutions that meet the evolving demands of modern technology.

Micro Magic, Inc.
Samsung, TSMC
10nm, 16nm
AI Processor, CPU, IoT Processor, Multiprocessor / DSP, Processor Core Independent, Processor Cores
View Details

SCR1 Microcontroller Core

SCR1 is an open-source and silicon-proven microcontroller core, tailored for deeply embedded applications. This 32-bit RISC-V core supports the standard ISA with optional extensions for multiplication, division, and compressed instructions. The design comprises a simple in-order 4-stage pipeline, providing efficient interrupt handling with an IPIC unit. It connects seamlessly with various interfaces, including AXI4, AHB-Lite, and JTAG, enhancing its adaptability across different systems. The SCR1 core boasts a Tightly-Coupled Memory (TCM) subsystem supporting up to 64KB. It features up to 16 interrupt lines and a range of performance monitoring tools making it ideal for IoT, control systems, and smart card applications. Pre-configured software development tools, including IDEs like Eclipse and Visual Studio Code plugins, complement the core, enabling developers to quickly deploy applications tailored to SCR1’s architecture. Additionally, SCR1 comes packaged with a rich suite of documentation and pre-configured FPGA-based SDK, ensuring a smooth transition from development to implementation. Its GPL-compliant open-source license ensures flexibility for commercial and educational use, making it a versatile choice for a wide range of projects.

Syntacore
Building Blocks, CPU, Microcontroller, Processor Cores
View Details

SCR6 Microcontroller Core

The SCR6 is a high-performance microcontroller core optimized for demanding embedded applications requiring substantial computational power. Its out-of-order 12-stage pipeline, complemented by a superscalar architecture, enhances processing speeds, making it ideal for real-time systems. Supporting a wide range of RISC-V ISA extensions, including cryptography and bit manipulation, SCR6 caters to secure and efficient data operations. The SCR6's memory subsystem is robust, featuring dual-level caches augmented with an L3 network-on-chip option. This rich memory architecture, along with efficient interrupt processing via APLIC units, ensures smooth high-speed data throughput in intensive applications. The core supports heterogeneous multicore configurations, enhancing parallel task execution. Designed for industrial and IoT environments, SCR6 comes with extensive development support. Its toolkit includes simulations, FPGA-based SDKs, and integration resources, facilitated through industry-standard interfaces, ensuring rapid development cycles and application deployment.

Syntacore
Building Blocks, CPU, IoT Processor, Microcontroller, Processor Cores
View Details

eSi-1650

Designed for low-power applications, the eSi-1650 16-bit processor IP core includes an instruction cache, enhancing performance efficiency in systems using OTP or Flash for program memory. This core offers a low gate count, similar to many 8-bit cores, while the inclusion of a cache allows it to operate at higher speeds than standalone memory performance would normally allow. Its instruction set is robust, featuring a multitude of arithmetic and optional application-specific instructions, adaptations which facilitate lower power consumption and higher performance by allowing more immediate processing and reduced clock speeds.

eSi-RISC
All Foundries, Samsung, TSMC, UMC
10nm, 16nm, 180nm
CPU, Microcontroller, Processor Cores
View Details

SCR4 Microcontroller Core

The SCR4 core is a high-performance, area-efficient RISC-V processor with floating-point computation capabilities. Targeting mobile and industrial applications, it supports both single and double precision, adhering to IEEE 754-2008 standards. Its instruction set is complete with advanced extensions, including atomic and cryptography functions for secure and efficient operations. With a powerful 5-stage in-order pipeline and a dedicated FPU, the SCR4 can handle complex mathematical tasks swiftly. Its memory architecture features both L1 and L2 caches, alongside a TCM unit, enabling rapid data access and management essential in real-time environments. Incorporating a robust branch prediction unit and support for multicore setups, the SCR4 excels in environments demanding synchronized computing tasks across multiple processors. It’s supported by comprehensive development kits and detailed documentation to expedite the design and implementation processes across diverse platforms.

Syntacore
Building Blocks, CPU, DSP Core, Microcontroller, Processor Cores
View Details

SiFive Essential

SiFive Essential family offers a highly customizable set of processor IPs suitable for a range of applications, from embedded microcontrollers to full-fledged Linux-capable designs. This family presents the flexibility to tailor power, area, and performance metrics according to specific market needs, ensuring that designers can optimize their solutions for diverse applications. The Essential lineup is structured to allow easy adaptability, featuring scalable microarchitectures that cater to every stage of product development. From lightweight, power-efficient processors optimized for IoT devices to more robust configurations designed for real-time control and processing, SiFive Essential processors cover a broad spectrum of use cases. Key features include advanced trace and debug capabilities and an open, scalable platform enhancing the overall security of SoC designs. With its comprehensive customization options, the Essential family is perfect for designers who need to strike a balance between performance and power efficiency. This versatility positions the SiFive Essential series as a cornerstone in providing quality RISC-V solutions, allowing for innovation without compromise on customizability and scalability.

SiFive, Inc.
CPU, IoT Processor, Microcontroller, Processor Core Dependent, Processor Core Independent, Processor Cores
View Details

Wormhole

Wormhole is a versatile communication system designed to enhance data flow within complex computational architectures. By employing state-of-the-art connectivity solutions, it enables efficient data exchange, critical for high-speed processing and low-latency communication. This technology is essential for maintaining optimal performance in environments demanding seamless data integration. Wormhole's ability to manage significant data loads with minimal latency makes it particularly suitable for applications requiring real-time data processing and transfer. Its integration into existing systems can enhance overall efficiency, fostering a more responsive computational environment. This makes it an invaluable asset for sectors undergoing digital transformation. The adaptability of Wormhole to various technological requirements ensures it remains relevant across diverse industry applications. This flexibility means that it can scale with ongoing technological advancements, cementing its role as a cornerstone in the evolving landscape of high-speed data communications.

Tenstorrent
AI Processor, CPU, CXL, D2D, Interlaken, IoT Processor, Network on Chip, Processor Core Dependent, Processor Core Independent, Processor Cores
View Details

SiFive Intelligence X280

The SiFive Intelligence X280 processor is crafted for the demands of AI and ML within edge computing environments. It integrates high-performance scalar and vector computing capabilities, making it ideal for data-heavy AI tasks like management, object detection, and speech processing. The X280 leverages the RISC-V architecture's open standards, bringing a high level of customizability and performance efficiency to AI applications. Equipped with SiFive's Matrix Engine, the X280 is capable of handling sophisticated AI workloads with its impressive maximum throughput of 16 TOPS for INT8 operations. This performance is achieved without compromising on power efficiency, maintaining a small footprint that makes it suitable for diverse deployment scenarios. The processor's scalability is a key feature, supporting vector lengths up to 512 bits to accommodate the demands of intensive machine learning operations. SiFive Intelligence X280 stands out for its role in reshaping the possibilities of AI at the edge, pushing forward the capabilities of machine learning with a comprehensive software and hardware integration. This approach ensures that the X280 can handle emerging AI challenges with ease, presenting a formidable solution for today's AI-driven applications.

SiFive, Inc.
AI Processor, Cryptography Cores, IoT Processor, Multiprocessor / DSP, Processor Core Dependent, Processor Cores, Security Processor, Security Subsystems, Vision Processor
View Details

Codasip RISC-V BK Core Series

The Codasip RISC-V BK Core Series is engineered to deliver flexibility and adaptability for a variety of embedded applications. These cores are designed to be low-power, offering an excellent balance of performance and energy efficiency. The series provides a spectrum of configurations, allowing developers to customize them to align with unique project requirements, ensuring each processor operates at peak efficiency for its specific use case. The cores are RISC-V compliant and adhere to stringent industry standards for quality, making them a reliable choice for sensitive applications.

Codasip
CPU, DSP Core, IoT Processor, Processor Core Dependent, Processor Core Independent, Processor Cores
View Details

Fast 8-bit 8051 with On-Chip Debug M8051EW

The M8051EW expands upon the M8051W's impressive performance by incorporating on-chip debugging capabilities. This microcontroller core offers not only rapid execution but also integrates a JTAG debug port for compatibility with external debugging tools. Additionally, this core is designed with hardware breakpoints and instruction tracebacks, providing full read and write access across all register and memory locations. Such capabilities, together with its fast execution cycle, make it an ideal choice for designs requiring advanced debugging and real-time control.

Syntill8 Ltd.
CPU, Microcontroller, Processor Cores
View Details

General Purpose Accelerator (Aptos)

The General Purpose Accelerator (Aptos) from Ascenium stands out as a redefining force in the realm of CPU technology. It seeks to overcome the limitations of traditional CPUs by providing a solution that tackles both performance inefficiencies and high energy demands. Leveraging compiler-driven architecture, this accelerator introduces a novel approach by simplifying CPU operations, making it exceptionally suited for handling generic code. Notably, it offers compatibility with the LLVM compiler, ensuring a wide range of applications can be adapted seamlessly without rewrites. The Aptos excels in performance by embracing a highly parallel yet simplified CPU framework that significantly boosts efficiency, reportedly achieving up to four times the performance of cutting-edge CPUs. Such advancements cater not only to performance-oriented tasks but also substantially mitigate energy consumption, providing a dual benefit of cost efficiency and reduced environmental impact. This makes Aptos a valuable asset for data centers seeking to optimize their energy footprint while enhancing computational capabilities. Additionally, the Aptos architecture supports efficient code execution by resolving tasks predominantly at compile-time, allowing the processor to handle workloads more effectively. This allows standard high-level language software to run with improved efficiency across diverse computing environments, aligning with an overarching goal of greener computing. By maximizing operational efficiency and reducing carbon emissions, Aptos propels Ascenium into a leading position in the sustainable and high-performance computing sector.

Ascenium
TSMC
10nm, 12nm
CPU, Processor Core Dependent, Processor Core Independent, Processor Cores, Standard cell
View Details

Azurite Core-hub

The Azurite Core-hub by InCore Semiconductors is a sophisticated solution designed to offer scalable RISC-V SoCs with high-speed secure interconnect capabilities. This processor is tailored for performance-demanding applications, ensuring that systems maintain robust security while executing tasks at high speeds. Azurite leverages advanced interconnect technologies to enhance the communication between components within a SoC, making it ideal for industries that require rapid data transfer and high processing capabilities. The core is engineered to be scalable, supporting a wide range of applications from edge AI to functional safety systems, adapting seamlessly to various industry needs. Engineered with a focus on security, the Azurite Core-hub incorporates features that protect data integrity and system operation in a dynamic technological landscape. This makes it a reliable choice for companies seeking to integrate advanced RISC-V architectures into their security-focused applications, offering not just innovation but also peace of mind with its secure design.

InCore Semiconductors
AI Processor, CPU, Microcontroller, Processor Core Dependent, Processor Core Independent, Processor Cores
View Details

Rabbit 4000

The Rabbit 4000 microprocessor represents a significant escalation in processing capabilities, boasting an impressive 161K gate design and 128-pin configuration. Developed to cater to demanding digital environments, this processor delivers advanced performance alongside flexible deployment options. It is particularly tailored for use in complex systems requiring both potent processing power and diverse interface options, while still adhering to industry standards for adaptability and integration.

Systemyde International Corp.
CPU, Microcontroller, Processor Cores
View Details

SiFive Performance

The SiFive Performance family is tailored for maximum throughput in datacenter workloads, serving environments from web servers to networking and storage. This collection of processors boasts 64-bit, Out of Order (OoO) cores optimized for energy-efficient, high-performance computation. Designed to handle AI workloads with specific vector engines, the Performance processors offer a scalable core architecture, ranging from three-wide to six-wide out-of-order configurations. The P870-D processor, a standout in the Performance series, is engineered for datacenters and AI, supporting scalable compute density across multiple cores. Among other products, the Performance family includes the P650, P550, and P450, each offering varying multi-core and pipeline structures to cater to different workload needs. The blend of top-tier performance, compact footprint, and cost efficiency makes these processors an optimal choice for modern high-performance applications and environments. SiFive's Performance series is built to not only meet but surpass the demands of various markets, including mobile, consumer, datacenter, and industrial automation. It represents SiFive's commitment to advancing the scope of RISC-V technology, pushing boundaries in high-performance processing through careful design and innovation.

SiFive, Inc.
CPU, Multiprocessor / DSP, Processor Core Dependent, Processor Core Independent, Processor Cores, Vision Processor
View Details

RISC-V Core IP

The RISC-V Core IP developed by AheadComputing Inc. is designed to deliver exceptional performance for advanced computing applications. This processor is engineered to harness the full potential of the RISC-V architecture, providing a balance of power efficiency and processing capability that caters to the needs of modern computing environments. By leveraging the open-source RISC-V standard, this processor offers flexibility and customization opportunities, making it a versatile choice for various industries. AheadComputing's RISC-V Core IP is crafted with a focus on scalability and adaptability, ensuring that it can be integrated into a wide range of devices, from consumer electronics to complex industrial systems. The processor's architecture allows for simplifying hardware design while maintaining high performance, which is essential for applications that require quick data processing and seamless multitasking. The technical prowess of this RISC-V processor is evident in its ability to boost IPC (Instructions Per Cycle) performance, setting new benchmarks for speed and reliability. With a keen eye on the future, AheadComputing continues to refine its processor technology to align with emerging trends and demands, positioning its RISC-V Core IP as a key component in the evolution of future-ready computing solutions.

AheadComputing Inc.
AI Processor, CPU, IoT Processor, Multiprocessor / DSP, Processor Cores
View Details

SCR3 Microcontroller Core

The SCR3 core by Syntacore is a silicon-proven microcontroller aimed at applications requiring both high performance and power efficiency. This 32/64-bit processor core supports a variety of RISC-V standard extensions, including atomic operations and bit manipulation, optimizing it for real-time applications needing reliable interrupt handling through its PLIC, ACLINT, and IPIC units. It features a 5-stage in-order pipeline paired with branch prediction and cache systems to enhance speed and execution efficiency. With considerable support for seamless memory operations, it includes both L1 and L2 caches and a TCM unit capable of housing up to 256KB of data, alongside an integrated Memory Protection Unit for executing multiple privilege modes. Ideal for industrial automation and IoT usage, the SCR3 core facilitates multicore operations with cache coherency for up to 4 simultaneous cores. Extensive development tools are provided, including simulators, IDE support, and a comprehensive FPGA-based SDK, allowing for immediate application development and deployment.

Syntacore
Building Blocks, CPU, DSP Core, Microcontroller, Processor Cores
View Details

RISC-V CPU IP N Class

The RISC-V CPU IP N Class from Nuclei System Technology offers a versatile 32-bit architecture designed for microcontroller units (MCUs) and AIoT applications. Engineered with the RISC-V open standard, this processor IP provides extensive configurability options, allowing users to tailor the IP to meet their specific system requirements. It supports a variety of security features and functional safety protocols, making it suitable for applications demanding reliable and robust performance. This CPU IP is perfect for those implementing advanced RISC-V technology in fields that require agility and cutting-edge functionality. Its ease of customization ensures seamless integration into existing systems, supporting an array of ecosystem resources such as tool-chains, SDKs, and support for operating systems including RTOS and Linux. With a local R&D team backing its development, the N Class IP sees rapid iteration and enhancement, aligning with the technological demands and trends in high-performance computing. This positions it as a leading choice for firms looking to adopt RISC-V technology in innovative and emergent applications.

Nuclei System Technology
Building Blocks, CPU, IoT Processor, Microcontroller, Processor Core Dependent, Processor Cores
View Details

SCR5 Application Core

Syntacore's SCR5 is an efficient application-class processor core, crafted to deliver exceptional performance with Linux compatibility. It integrates a 9-stage in-order pipeline along with floating-point capabilities, making it suitable for diverse processing tasks. Adopting the latest RISC-V ISA extensions, SCR5 ensures high-speed computations and secure operations equipped with bit manipulation and cryptography features. The SCR5’s robust memory subsystem ensures data integrity and rapid access, featuring L1 and L2 caches, a TCM, and an MMU. High-performance multicore support extends up to four cores, promoting parallel processing capabilities necessary in industrial and IoT environments. Its interface support, including JTAG and AXI4, streamlines integration into varied infrastructures. For developers, the SCR5 core is accompanied by advanced toolkits designed to accelerate application deployment. These include pre-built OS options and native toolchains, all backed by thorough documentation to enhance the development lifecycle.

Syntacore
Audio Processor, Building Blocks, CPU, Microcontroller, Processor Cores
View Details

WiseEye2 AI Solution

The WiseEye2 AI solution by Himax represents a significant leap forward in AI-enhanced sensing for smart devices. Designed for low-power operation, this solution integrates a specialized CMOS image sensor with the HX6538 microcontroller to deliver high-performance AI capabilities with minimal energy consumption. This makes it ideal for battery-powered devices that require continual operation, facilitating a new generation of always-on AI solutions without the typical drain on battery life. Thanks to its ARM-based Cortex M55 CPU and Ethos U55 NPU, WiseEye2 offers robust processing while maintaining a compact profile. Its multi-layer power management architecture not only maximizes energy efficiency but also supports the latest advancements in AI processing, allowing for faster and more accurate inference. Additionally, its industrial-grade security features ensure that data remains protected, catering particularly well to applications in personal computing devices. By enhancing capabilities such as user presence detection and improving facial recognition functionalities, WiseEye2 helps devices intelligently interact with users over various scenarios, whether in smart home setups, security domains, or personal electronics. This blend of smart functionality with energy conscientiousness reflects Himax's commitment to innovating sustainable technology solutions.

Himax Technologies, Inc.
AI Processor, Audio Processor, Cryptography Cores, Embedded Security Modules, Multiprocessor / DSP, Other, Platform Security, Processor Cores, Security Subsystems, Vision Processor
View Details

Monolithic Microsystems

Monolithic Microsystems represents a technological leap in integrated system design, featuring multiple micro-engineered elements within a single chip. This system leverages advanced CMOS technology to unify electronic, photonic, and micromechanical devices, creating a compact and efficient platform suited for a variety of applications. By integrating different functionalities within a single substrate, these Microsystems can enhance performance while reducing the overall system footprint. They are increasingly being used in fields such as telecommunications, medical devices, and consumer electronics, where precision, reliability, and miniaturization are of paramount importance.

Imec
12 Categories
View Details

RV32EC_P2 Processor Core

The RV32EC_P2 Processor Core is a compact, high-efficiency RISC-V processor designed for low-power, small-scale embedded applications. Featuring a 2-stage pipeline architecture, it efficiently executes trusted firmware. It supports the RISC-V RV32E base instruction set, complemented by compression and optional integer multiplication instructions, greatly optimizing code size and runtime efficiency. This processor accommodates both ASIC and FPGA workflows, offering tightly-coupled memory interfaces for robust design flexibility. With a simple machine-mode architecture, the RV32EC_P2 ensures swift data access. It boasts extended compatibility with AHB-Lite and APB interfaces, allowing seamless interaction with memory and I/O peripherals. Designed for enhanced power management, it features an interrupt system and clock-gating abilities, effectively minimizing idle power consumption. Developers can benefit from its comprehensive toolchain support, ensuring smooth firmware and virtual prototype development through platforms such as the ASTC VLAB. Further distinguished by its vectored interrupt system and support for application-specific instruction sets, the RV32EC_P2 is adaptable to various embedded applications. Enhancements include wait-for-interrupt commands for reduced power usage during inactivity and multiple timer interfaces. This versatility, along with integrated GNU and Eclipse tools, makes the RV32EC_P2 a prime choice for efficient, low-power technology integrations.

IQonIC Works
Audio Processor, Coprocessor, CPU, Microcontroller, Processor Core Dependent, Processor Core Independent, Processor Cores
View Details

Y51

The Y51 processor utilizes the 8051 Instruction Set Architecture, operating with a 2-clock machine cycle for streamlined execution. This design is optimized for tasks that require swift, efficient instruction handling while maintaining architectural simplicity. The balanced configuration facilitates rapid processing, making it suitably versatile for various embedded systems that benefit from the established 8051 architecture.

Systemyde International Corp.
CPU, Microcontroller, Processor Cores
View Details

Rabbit 2000

The Rabbit 2000 microprocessor is a compact yet powerful design consisting of 19K gates and supports 100 pins. Tailored for seamless integration across various technologies, this microprocessor offers platform independence that ensures high adaptability in design implementation. It exemplifies a balanced architecture, achieving efficient performance while maintaining modest resource usage, making it ideal for a range of applications requiring robust control and processing capabilities.

Systemyde International Corp.
CPU, I/O Library, Microcontroller, Processor Cores
View Details

RAIV General Purpose GPU

The RAIV General Purpose GPU (GPGPU) epitomizes versatility and cutting-edge technology in the realm of data processing and graphics acceleration. It serves as a crucial technology enabler for various prominent sectors that are central to the fourth industrial revolution, such as autonomous driving, IoT, virtual reality/augmented reality (VR/AR), and sophisticated data centers. By leveraging the RAIV GPGPU, industries are able to process vast amounts of data more efficiently, which is paramount for their growth and competitive edge. Characterized by its advanced architectural design, the RAIV GPU excels in managing substantial computational loads, which is essential for AI-driven processes and complex data analytics. Its adaptability makes it suitable for a wide array of applications, from enhancing automotive AI systems to empowering VR environments with seamless real-time interaction. Through optimized data handling and acceleration, the RAIV GPGPU assists in realizing smoother and more responsive application workflows. The strategic design of the RAIV GPGPU focuses on enabling integrative solutions that enhance performance without compromising on power efficiency. Its functionality is built to meet the high demands of today’s tech ecosystems, fostering advancements in computational efficiency and intelligent processing capabilities. As such, the RAIV stands out not only as a tool for improved graphical experiences but also as a significant component in driving innovation within tech-centric industries worldwide. Its pioneering architecture thus supports a multitude of applications, ensuring it remains a versatile and indispensable asset in diverse technological landscapes.

Siliconarts, Inc.
AI Processor, Building Blocks, CPU, GPU, Multiprocessor / DSP, Processor Core Dependent, Processor Cores, Vision Processor, Wireless Processor
View Details

Y180S

An evolution of the Y180, the Y180S offers a safe-state version of its predecessor, encompassing approximately 10K gates. This enhanced version is tailored for applications where safety and state retention are critical, maintaining all the beneficial features of the Y180 while incorporating additional safety mechanisms. Its architecture remains compatible with Z80 instruction sets, ensuring consistent integration across platforms necessitating reliable and secure processing.

Systemyde International Corp.
CPU, IoT Processor, Microcontroller, Processor Cores
View Details

Y8002

The Y8002 microprocessor is a replication of a known Zilog device, with a gate count of approximately 15K. Designed to offer consistent performance aligned with Zilog's benchmarks, it supports projects requiring both reliability and compatibility with Zilog's infrastructure. Its gate efficiency and operational familiarity make it an optimal choice for tasks needing precision alongside established interface standards.

Systemyde International Corp.
CPU, IoT Processor, Microcontroller, Processor Cores
View Details

Rabbit 3000

Built with a focus on versatility and resource efficiency, the Rabbit 3000 microprocessor expands on its predecessor with a gate count of 31K and 128 pins. This design accommodates more complex applications and demands, offering greater processing power while sustaining high levels of flexibility and integration. Ideal for sophisticated systems, the Rabbit 3000 balances enhanced computational capabilities with effective resource distribution while ensuring seamless functionality across various platforms.

Systemyde International Corp.
CPU, Microcontroller, Processor Cores
View Details
Load more
Sign up to Silicon Hub to buy and sell semiconductor IP

Sign Up for Silicon Hub

Join the world's most advanced semiconductor IP marketplace!

It's free, and you'll get all the tools you need to discover IP, meet vendors and manage your IP workflow!

Switch to a Silicon Hub buyer account to buy semiconductor IP

Switch to a Buyer Account

To evaluate IP you need to be logged into a buyer profile. Select a profile below, or create a new buyer profile for your company.

Add new company

Switch to a Silicon Hub buyer account to buy semiconductor IP

Create a Buyer Account

To evaluate IP you need to be logged into a buyer profile. It's free to create a buyer profile for your company.

Chatting with Volt