Find IP Sell IP AI Assistant Chip Talk Chip Videos About Us
Log In

All IPs > Platform Level IP > Processor Core Independent

Innovative Processor Core Independent Semiconductor IP

In the ever-evolving landscape of semiconductor technologies, processor core independent IPs play a crucial role in designing flexible and scalable digital systems. These semiconductor technologies offer the versatility of enabling functionalities independent of a specific processor core, making them invaluable for a variety of applications where flexibility and reusability are paramount.

Processor core independent semiconductor IPs are tailored to function across different processor architectures, avoiding the constraints tied to any one specific core. This characteristic is particularly beneficial in embedded systems, where designers aim to balance cost, performance, and power efficiency while ensuring seamless integration. These IPs provide solutions that accommodate diverse processing requirements, from small-scale embedded controllers to large-scale data centers, making them essential components in the toolkit of semiconductor design engineers.

Products in this category often include memory controllers, I/O interfaces, and various digital signal processing blocks, each designed to operate autonomously from the central processor's architecture. This independence allows manufacturers to leverage these IPs in a broad array of devices, from consumer electronics to automotive systems, without the need for extensive redesigns for different processor families. Moreover, this flexibility championed by processor core independent IPs significantly accelerates the time-to-market for many devices, offering a competitive edge in high-paced industry environments.

Furthermore, the adoption of processor core independent IPs supports the development of customized, application-specific integrated circuits (ASICs) and system-on-chips (SoCs) that require unique configurations, without the overhead of processor-specific dependencies. By embracing these advanced semiconductor IPs, businesses can ensure that their devices are future-proof, scalable, and capable of integrating new functionalities as technologies advance without being hindered by processor-specific limitations. This adaptability positions processor core independent IPs as a vital cog in the machine of modern semiconductor design and innovation.

All semiconductor IP
159
IPs available

MetaTF

MetaTF is BrainChip's proprietary software development framework built to streamline the creation, training, and deployment of neural networks on their Akida neuromorphic processor. This tool is designed specifically for working with edge AI, complementing the hardware capabilities of Akida by providing a rich environment for model development and conversion.\n\nThe framework supports the conversion of traditional TensorFlow and Keras models into spiking neural networks optimized for BrainChip's unique event-based processing. This conversion allows developers to harness the energy efficiency and performance benefits of the Akida architecture without needing to overhaul existing machine learning frameworks.\n\nMetaTF facilitates the adaptation of models to the Akida system through its model zoo, which includes various pre-configured network models, and offers comprehensive tools for simulation and testing. This environment makes it an indispensable resource for businesses aiming to deploy sophisticated AI applications at the edge, minimizing development time while maximizing performance and efficiency.

BrainChip
AI Processor, Coprocessor, Processor Core Independent
View Details

Metis AIPU PCIe AI Accelerator Card

The Metis AIPU PCIe AI Accelerator Card offers exceptional performance for AI workloads demanding significant computational capacity. It is powered by a single Metis AIPU and delivers up to 214 TOPS, catering to high-demand applications such as computer vision and real-time image processing. This PCIe card is integrated with the Voyager SDK, providing developers with a powerful yet user-friendly software environment for deploying complex AI applications seamlessly. Designed for efficiency, this accelerator card stands out by providing cutting-edge performance without the excessive power requirements typical of data center equipment. It achieves remarkable speed and accuracy, making it an ideal solution for tasks requiring fast data processing and inference speeds. The PCIe card supports a wide range of AI application scenarios, from enhancing existing infrastructure capabilities to integrating with new, dynamic systems. Its utility in various industrial settings is bolstered by its compatibility with the suite of state-of-the-art neural networks provided in the Axelera AI ecosystem.

Axelera AI
2D / 3D, AI Processor, AMBA AHB / APB/ AXI, Building Blocks, Multiprocessor / DSP, Processor Core Dependent, Processor Core Independent, Processor Cores, Vision Processor, WMV
View Details

CXL 3.1 Switch

The CXL 3.1 Switch by Panmnesia is a high-tech solution designed to manage diverse CXL devices within a cache-coherent system, minimizing latency through its proprietary low-latency CXL IP. This switch supports a scalable and flexible architecture, offering multi-level switching and port-based routing capabilities that allow expansive system configurations to meet various application demands. It is engineered to connect system devices such as CPUs, GPUs, and memory modules, ideal for constructing large-scale systems tailored to specific needs.

Panmnesia
AMBA AHB / APB/ AXI, CXL, D2D, Fibre Channel, Gen-Z, Multiprocessor / DSP, PCI, Processor Core Dependent, Processor Core Independent, RapidIO, SAS, SATA, V-by-One
View Details

Yitian 710 Processor

The Yitian 710 Processor is an advanced Arm-based server chip developed by T-Head, designed to meet the extensive demands of modern data centers and enterprise applications. This processor boasts 128 high-performance Armv9 CPU cores, each coupled with robust caches, ensuring superior processing speeds and efficiency. With a 2.5D packaging technology, the Yitian 710 integrates multiple dies into a single unit, facilitating enhanced computational capability and energy efficiency. One of the key features of the Yitian 710 is its memory subsystem, which supports up to 8 channels of DDR5 memory, achieving a peak bandwidth of 281 GB/s. This configuration guarantees rapid data access and processing, crucial for high-throughput computing environments. Additionally, the processor is equipped with 96 PCIe 5.0 lanes, offering a dual-direction bandwidth of 768 GB/s, enabling seamless connectivity with peripheral devices and boosting system performance overall. The Yitian 710 Processor is meticulously crafted for applications in cloud services, big data analytics, and AI inference, providing organizations with a robust platform for their computing needs. By combining high core count, extensive memory support, and advanced I/O capabilities, the Yitian 710 stands as a cornerstone for deploying powerful, scalable, and energy-efficient data processing solutions.

T-Head
AI Processor, AMBA AHB / APB/ AXI, Audio Processor, CPU, Microcontroller, Multiprocessor / DSP, Processor Core Independent, Processor Cores, Vision Processor
View Details

AX45MP

The AX45MP is engineered as a high-performance processor that supports multicore architecture and advanced data processing capabilities, particularly suitable for applications requiring extensive computational efficiency. Powered by the AndesCore processor line, it capitalizes on a multicore symmetric multiprocessing framework, integrating up to eight cores with robust L2 cache management. The AX45MP incorporates advanced features such as vector processing capabilities and support for MemBoost technology to maximize data throughput. It caters to high-demand applications including machine learning, digital signal processing, and complex algorithmic computations, ensuring data coherence and efficient power usage.

Andes Technology
2D / 3D, ADPCM, CPU, IoT Processor, Processor Core Independent, Processor Cores, Vision Processor
View Details

Jotunn8 AI Accelerator

The Jotunn8 represents a leap in AI inference technology, delivering unmatched efficiency for modern data centers. This chip is engineered to manage AI model deployments with lightning-fast execution, at minimal cost and high scalability. It ensures optimal performance by balancing high throughput and low latency, while being extremely power-efficient, which significantly lowers operational costs and supports sustainable infrastructures. The Jotunn8 is designed to unlock the full capacity of AI investments by providing a high-performance platform that enhances the delivery and impact of AI models across applications. It is particularly suitable for real-time applications such as chatbots, fraud detection, and search engines, where ultra-low latency and very high throughput are critical. Power efficiency is a major emphasis of the Jotunn8, optimizing performance per watt to control energy as a substantial operational expense. Its architecture allows for flexible memory allocation ensuring seamless adaptability across varied applications, providing a robust foundation for scalable AI operations. This solution is aimed at enhancing business competitiveness by supporting large-scale model deployment and infrastructure optimization.

VSORA
AI Processor, DSP Core, Interleaver/Deinterleaver, Multiprocessor / DSP, Processor Core Dependent, Processor Core Independent, Vision Processor
View Details

Chimera GPNPU

The Chimera GPNPU from Quadric is designed as a general-purpose neural processing unit intended to meet a broad range of demands in machine learning inference applications. It is engineered to perform both matrix and vector operations along with scalar code within a single execution pipeline, which offers significant flexibility and efficiency across various computational tasks. This product achieves up to 864 Tera Operations per Second (TOPs), making it suitable for intensive applications including automotive safety systems. Notably, the GPNPU simplifies system-on-chip (SoC) hardware integration by consolidating hardware functions into one processor core. This unification reduces complexity in system design tasks, enhances memory usage profiling, and optimizes power consumption when compared to systems involving multiple heterogeneous cores such as NPUs and DSPs. Additionally, its single-core setup enables developers to efficiently compile and execute diverse workloads, improving performance tuning and reducing development time. The architecture of the Chimera GPNPU supports state-of-the-art models with its Forward Programming Interface that facilitates easy adaptation to changes, allowing support for new network models and neural network operators. It’s an ideal solution for products requiring a mix of traditional digital signal processing and AI inference like radar and lidar signal processing, showcasing a rare blend of programming simplicity and long-term flexibility. This capability future-proofs devices, expanding their lifespan significantly in a rapidly evolving tech landscape.

Quadric
14 Categories
View Details

Time-Triggered Ethernet

Time-Triggered Ethernet (TTE) combines the robustness of Ethernet technology with the precision of time-triggered communication. Designed for critical applications that demand reliability and synchronized communication, TTE finds its place in aerospace and industrial sectors. TTE operates by affording secure, deterministic data transmission over Ethernet networks. It achieves this by dedicating specific time slots for high-priority traffic, ensuring latency and jitter are minimized. This segregation allows time-sensitive data to safely coexist with traditional Ethernet traffic, without sacrificing normal network operations. The protocol's architecture underlies a mixed-criticality networking environment, supporting integration with standard Ethernet devices. TTE's scheduling mechanism guarantees timely delivery of critical messages, crucial in environments where even microsecond delays can impact overall system performance. Its application ensures Ethernet networks meet the stringent requirements of real-time operations synonymous with safety-critical systems.

TTTech Computertechnik AG
Ethernet, FlexRay, LIN, MIL-STD-1553, MIPI, Processor Core Independent, Safe Ethernet
View Details

Universal Chiplet Interconnect Express (UCIe)

The Universal Chiplet Interconnect Express (UCIe) by Extoll exemplifies a transformative approach towards interconnect technology, underpinning the age of chiplets with a robust framework for high-speed data exchange. This innovative solution caters to the growing demands of heterogeneous integration, providing a standardized protocol that empowers seamless communication between various chiplet designs. UCIe stands out by offering unparalleled connectivity and interoperability, ensuring that diverse chiplet systems function cohesively. This interconnect solution is tailored to the needs of modern digital architectures, emphasizing adaptability and performance across different tech nodes. With Extoll’s mastery in digital-centric design, the UCIe provides an efficient gateway for integrating multiple technological processes into a singular framework. The development of UCIe is also driven by the need for solutions that are both energy and cost-efficient. By leveraging Extoll’s low power architecture, UCIe facilitates energy savings without compromising on speed and data integrity. This makes it an indispensable tool for entities that prioritize scalable, high-performance interconnection solutions, aligning with the semiconductor industry's move toward more modular and sustainable system architectures.

Extoll GmbH
AMBA AHB / APB/ AXI, D2D, Gen-Z, Multiprocessor / DSP, Processor Core Independent, V-by-One, VESA
View Details

AndesCore Processors

AndesCore Processors offer a robust lineup of high-performance CPUs tailored for diverse market segments. Employing the AndeStar V5 instruction set architecture, these cores uniformly support the RISC-V technology. The processor family is classified into different series, including the Compact, 25-Series, 27-Series, 40-Series, and 60-Series, each featuring unique architectural advances. For instance, the Compact Series specializes in delivering compact, power-efficient processing, while the 60-Series is optimized for high-performance out-of-order execution. Additionally, AndesCore processors extend customization through Andes Custom Extension, which allows users to define specific instructions to accelerate application-specific tasks, offering a significant edge in design flexibility and processing efficiency.

Andes Technology
CPU, FlexRay, Processor Core Dependent, Processor Core Independent, Processor Cores, Security Processor
View Details

ORC3990 – DMSS LEO Satellite Endpoint System On Chip (SoC)

The ORC3990 SoC is a state-of-the-art solution designed for satellite IoT applications within Totum's DMSS™ network. This low-power sensor-to-satellite system integrates an RF transceiver, ARM CPUs, memories, and PA to offer seamless IoT connectivity via LEO satellite networks. It boasts an optimized link budget for effective indoor signal coverage, eliminating the need for additional GNSS components. This compact SoC supports industrial temperature ranges and is engineered for a 10+ year battery life using advanced power management.

Orca Systems Inc.
TSMC
22nm
3GPP-5G, Bluetooth, Processor Core Independent, RF Modules, USB, Wireless Processor
View Details

Dynamic Neural Accelerator II Architecture

The Dynamic Neural Accelerator II (DNA-II) is a highly efficient and versatile IP specifically engineered for optimizing AI workloads at the edge. Its unique architecture allows runtime reconfiguration of interconnects among computing units, which facilitates improved parallel processing and efficiency. DNA-II supports a broad array of networks, including convolutional and transformer networks, making it an ideal choice for numerous edge applications. Its design emphasizes low power consumption while maintaining high computational performance. By utilizing a dynamic data path architecture, DNA-II sets a new benchmark for IP cores aimed at enhancing AI processing capabilities.

EdgeCortix Inc.
AI Processor, Audio Processor, CPU, Cryptography Cores, Multiprocessor / DSP, Processor Core Dependent, Processor Core Independent, Processor Cores, Vision Processor
View Details

xcore.ai

xcore.ai is a powerful platform tailored for the intelligent IoT market, offering unmatched flexibility and performance. It boasts a unique multi-threaded micro-architecture that provides low-latency and deterministic performance, perfect for smart applications. Each xcore.ai contains 16 logical cores distributed across two multi-threaded processor tiles, each equipped with 512kB of SRAM and capable of both integer and floating-point operations. The integrated interprocessor communication allows high-speed data exchange, ensuring ultimate scalability across multiple xcore.ai SoCs within a unified development environment.

XMOS Semiconductor
20 Categories
View Details

RISC-V Core-hub Generators

The RISC-V Core-hub Generators from InCore are tailored for developers who need advanced control over their core architectures. This innovative tool enables users to configure core-hubs precisely at the instruction set and microarchitecture levels, allowing for optimized design and functionality. The platform supports diverse industry applications by facilitating the seamless creation of scalable and customizable RISC-V cores. With the RISC-V Core-hub Generators, InCore empowers users to craft their own processor solutions from the ground up. This flexibility is pivotal for businesses looking to capitalize on the burgeoning RISC-V ecosystem, providing a pathway to innovation with reduced risk and cost. Incorporating feedback from leading industry partners, these generators are designed to lower verification costs while accelerating time-to-market for new designs. Users benefit from InCore's robust support infrastructure and a commitment to simplifying complex chip design processes. This product is particularly beneficial for organizations aiming to integrate RISC-V technology efficiently into their existing systems, ensuring compatibility and enhancing functionality through intelligent automation and state-of-the-art tools.

InCore Semiconductors
AI Processor, CPU, IoT Processor, Multiprocessor / DSP, Processor Core Dependent, Processor Core Independent, Processor Cores
View Details

Nerve IIoT Platform

The Nerve IIoT Platform is a comprehensive solution for machine builders, offering cloud-managed edge computing capabilities. This innovative platform delivers high levels of openness, security, flexibility, and real-time data handling, enabling businesses to embark on their digital transformation journeys. Nerve's architecture allows for seamless integration with a variety of hardware devices, from basic gateways to advanced IPCs, ensuring scalability and operational efficiency across different industrial settings. Nerve facilitates the collection, processing, and analysis of machine data in real-time, which is crucial for optimizing production and enhancing operational efficiency. By providing robust remote management functionalities, businesses can efficiently handle device operations and application deployments from any location. This capacity to manage data flows between the factory floor and the cloud transitions enterprises into a new era of digital management, thereby minimizing costs and maximizing productivity. The platform also supports multiple cloud environments, empowering businesses to select their preferred cloud service while maintaining operational continuity. With its secure, IEC 62443-4-1 certified infrastructure, Nerve ensures that both data and applications remain protected from cyber threats. Its integration of open technologies, such as Docker and virtual machines, further facilitates rapid implementation and prototyping, enabling businesses to adapt swiftly to ever-changing demands.

TTTech Industrial Automation AG
18 Categories
View Details

Wormhole

Wormhole is a high-efficiency processor designed to handle intensive AI processing tasks. Featuring an advanced architecture, it significantly accelerates AI workload execution, making it a key component for developers looking to optimize their AI applications. Wormhole supports an expansive range of AI models and frameworks, enabling seamless adaptation and deployment across various platforms. The processor’s architecture is characterized by high core counts and integrated system interfaces that facilitate rapid data movement and processing. This ensures that Wormhole can handle both single and multi-user environments effectively, especially in scenarios that demand extensive computational resources. The seamless connectivity supports vast memory pooling and distributed processing, enhancing AI application performance and scalability. Wormhole’s full integration with Tenstorrent’s open-source ecosystem further amplifies its utility, providing developers with the tools to fully leverage the processor’s capabilities. This integration facilitates optimized ML workflows and supports continuous enhancement through community contributions, making Wormhole a forward-thinking solution for cutting-edge AI development.

Tenstorrent
TSMC
16nm, 28nm
AI Processor, CPU, CXL, D2D, Interlaken, IoT Processor, Multiprocessor / DSP, Network on Chip, Processor Core Dependent, Processor Core Independent, Processor Cores
View Details

aiWare

aiWare represents aiMotive's advanced hardware intellectual property core for automotive neural network acceleration, pushing boundaries in efficiency and scalability. This neural processing unit (NPU) is tailored to meet the rigorous demands of automotive AI inference, providing robust support for various AI workloads, including CNNs, LSTMs, and RNNs. By achieving up to 256 Effective TOPS and remarkable scalability, aiWare caters to a wide array of applications, from edge processors in sensors to centralized high-performance modules.\n\nThe design of aiWare is particularly focused on enhancing efficiency in neural network operations, achieving up to 98% efficiency across diverse automotive applications. It features an innovative dataflow architecture, ensuring minimal external memory bandwidth usage while maximizing in-chip data processing. This reduces power consumption and enhances performance, making it highly adaptable for deployment in resource-critical environments.\n\nAdditionally, aiWare is embedded with comprehensive tools like the aiWare Studio SDK, which streamlines the neural network optimization and iteration process without requiring extensive NPU code adjustments. This ensures that aiWare can deliver optimal performance while minimizing development timelines by allowing for early performance estimations even before target hardware testing. Its integration into ASIL-B or higher certified solutions underscores aiWare's capability to power the most demanding safety applications in the automotive domain.

aiMotive
AI Processor, Building Blocks, CPU, Cryptography Cores, Platform Security, Processor Core Dependent, Processor Core Independent, Security Protocol Accelerators, Vision Processor
View Details

AndeShape Platforms

The AndeShape Platforms are designed to streamline system development by providing a diverse suite of IP solutions for SoC architecture. These platforms encompass a variety of product categories, including the AE210P for microcontroller applications, AE300 and AE350 AXI fabric packages for scalable SoCs, and AE250 AHB platform IP. These solutions facilitate efficient system integration with Andes processors. Furthermore, AndeShape offers a sophisticated range of development platforms and debugging tools, such as ADP-XC7K160/410, which reinforce the system design and verification processes, providing a comprehensive environment for the innovative realization of IoT and other embedded applications.

Andes Technology
Embedded Memories, Microcontroller, Processor Core Dependent, Processor Core Independent, Standard cell
View Details

SAKURA-II AI Accelerator

SAKURA-II is an advanced AI accelerator recognized for its efficiency and adaptability. It is specifically designed for edge applications that require rapid, real-time AI inference with minimal delay. Capable of processing expansive generative AI models such as Llama 2 and Stable Diffusion within an 8W power envelope, this accelerator supports a wide range of applications from vision to language processing. Its enhanced memory bandwidth and substantial DRAM capacity ensure its suitability for handling complex AI workloads, including large-scale language and vision models. The SAKURA-II platform also features robust power management, allowing it to achieve high efficiency during operations.

EdgeCortix Inc.
AI Processor, CPU, Multiprocessor / DSP, Processor Core Dependent, Processor Core Independent, Vision Processor
View Details

2D FFT

The 2D FFT core is engineered to deliver fast processing for two-dimensional FFT computations, essential in image and video processing applications. By utilizing both internal and external memory effectively, this core is capable of handling large data sets typical in medical imaging or aerial surveillance systems. This core leverages Dillon Engineering’s ParaCore Architect utility to maximize flexibility and efficiency. It takes advantage of a two-engine design, where data can flow between stages without interruption, ensuring high throughput and minimal memory delays. Such a robust setup is vital for applications where swift processing of extensive data grids is crucial. The architecture is structured to provide consistent, high-quality transform computations that are essential in applications where accuracy and speed are non-negotiable. The 2D FFT core, with its advanced design parameters, supports the varied demands of modern imaging technology, providing a reliable tool for developers and engineers working within these sectors.

Dillon Engineering, Inc.
GLOBALFOUNDRIES, TSMC
40nm
2D / 3D, GPU, Image Conversion, Multiprocessor / DSP, PLL, Processor Core Independent, Vision Processor, Wireless Processor
View Details

Titanium Ti375 - High-Density, Low-Power FPGA

The Titanium Ti375 FPGA is a high-density, low-power solution featuring Efinix’s Quantum® compute fabric. This state-of-the-art FPGA is equipped with a range of advanced features including a hardened RISC-V block, SerDes transceiver, and an LPDDR4 DRAM controller. It is designed to meet the demands of applications requiring high computational efficiency and low power consumption, making it ideal for rapid application development and deployment. This FPGA offers exceptional processing capabilities and flexibility, helping to reduce design complexity while optimizing performance for data-intensive applications. Its small package footprint is suitable for highly integrated systems, providing seamless compliance with existing protocols such as MIPI D-PHY. This combination of features makes it suitable for use in edge computing devices, advanced automotive systems, and next-generation IoT applications. Additionally, the Titanium Ti375 allows developers to exploit its high-speed I/O capabilities, facilitating robust peripheral interfacing and data transfer. The device also benefits from bitstream authentication and encryption to secure the intellectual property embedded within. As part of its wide-ranging applicability, it suits industrial environments that require solid reliability and long-term product lifecycles.

Efinix, Inc.
GLOBALFOUNDRIES
90nm
Audio Processor, Content Protection Software, Cryptography Software Library, Embedded Memories, Embedded Security Modules, PLL, Processor Core Independent, Processor Cores, SDRAM Controller
View Details

Topaz FPGAs - Volume Production Ready

The Topaz FPGA family by Efinix is crafted for high-performance, cost-efficient production volumes. Topaz FPGAs combine an advanced architecture with a low-power, high-volume design, suitable for mainstream applications. These devices integrate seamlessly into systems requiring robust protocol support, including PCIe Gen3, LVDS, and MIPI, making them ideal for machine vision, industrial automation, and wireless communications. These FPGAs are designed to pack more logic into a compact area, allowing for enhanced innovation and feature addition. The architecture facilitates seamless migration to higher performance Titanium FPGAs, making Topaz a flexible and future-proof choice for developers. With support for various BGAs, these units are easy to integrate, thus enhancing system design efficiency. Topaz FPGAs ensure product longevity and a stable supply chain, integral for applications characterized by long life cycles. This ensures systems maintain high efficiency and functionality over extended periods, aligning with Efinix’s commitment to offering durable and reliable semiconductor solutions for diverse market needs.

Efinix, Inc.
Samsung
28nm
AI Processor, AMBA AHB / APB/ AXI, Audio Processor, CPU, Embedded Memories, Processor Core Independent, Processor Cores, USB, V-by-One
View Details

Ultra-Low-Power 64-Bit RISC-V Core

Micro Magic offers a state-of-the-art 64-bit RISC-V core known for its ultra-low power consumption, clocking in at just 10mW when operating at 1GHz. This processor harnesses advanced design techniques that allow it to achieve high performance while maintaining low operational voltages, optimizing energy efficiency. This processor stands out for its capability to deliver impressive processing speeds, reaching up to 5GHz under optimal conditions. It is designed with power conservation in mind, making it ideal for applications where energy efficiency is critical without sacrificing processing capability. The core is part of Micro Magic’s commitment to pushing the boundaries of low-power processing technology, making it suitable for a variety of high-speed computing tasks. Its design is particularly advantageous in environments demanding swift data processing and minimal power use, reaffirming Micro Magic’s reputation for pioneering efficient silicon solutions.

Micro Magic, Inc.
AI Processor, CPU, IoT Processor, Multiprocessor / DSP, Processor Core Independent, Processor Cores
View Details

SiFive Essential

SiFive's Essential family of processor cores is designed to offer flexible and scalable performance for embedded applications and IoT devices. These cores provide a wide range of custom configurations that cater to specific power and area requirements across various markets. From minimal configuration microcontrollers to more complex, Linux-capable processors, the Essential family is geared to meet diverse needs while maintaining high efficiency. The Essential lineup includes 2-Series, 6-Series, and 7-Series cores, each offering different levels of scalability and performance efficiency. The 2-Series, for instance, focuses on power optimization, making it ideal for energy-constrained environments. The 6-Series and 7-Series expand these capabilities with richer feature sets, supporting more advanced applications with scalable infrastructure. Engineered for maximum configurability, SiFive Essential cores are equipped with robust debugging and tracing capabilities. They are customizable to optimize integration within System-on-Chip (SoC) applications, ensuring reliable and secure processing across a wide range of technologies. This ability to tailor the core designs ensures that developers can achieve a seamless balance between performance and energy consumption.

SiFive, Inc.
CPU, IoT Processor, Microcontroller, Processor Core Dependent, Processor Core Independent, Processor Cores
View Details

eSi-ADAS

The eSi-ADAS Radar IP Suite and Co-processor Engine is at the forefront of automotive and unmanned systems, enhancing radar detection and processing capabilities. It leverages cutting-edge signal processing technologies to provide accurate and rapid situational awareness, crucial for modern vehicles and aerial drones. With its comprehensive offering of radar algorithms, eSi-ADAS supports both traditional automotive radar applications and emerging unmanned aerial vehicle (UAV) platforms. This suite is crafted to meet the complex demands of real-time data processing and simultaneous multi-target tracking in dense environments, key for advanced driver-assistance systems. The co-processor engine within eSi-ADAS is highly efficient, designed to operate alongside existing vehicle systems with minimal additional power consumption. This suite is adaptable, supporting a wide range of vehicle architectures and operational scenarios, from urban driving to cross-country navigation.

EnSilica
AI Processor, CAN XL, CAN-FD, Content Protection Software, Flash Controller, Multiprocessor / DSP, Processor Core Independent, Security Processor, Security Protocol Accelerators
View Details

Tensix Neo

Tensix Neo represents the next evolution in AI processing, offering robust capabilities for handling modern AI challenges. Its design focuses on maximizing performance while maintaining efficiency, a crucial aspect in AI and machine learning environments. Tensix Neo facilitates advanced computation across multiple frameworks, supporting a range of AI applications. Featuring a strategic blend of core architecture and integrated memory, Tensix Neo excels in both processing speed and capacity, essential for handling comprehensive AI workloads. Its architecture supports multi-threaded operations, optimizing performance for parallel computing scenarios, which are common in AI tasks. Tensix Neo's seamless connection with Tenstorrent's open-source software environment ensures that developers can quickly adapt it to their specific needs. This interconnectivity not only boosts operational efficiency but also supports continuous improvements and feature expansions through community contributions, positioning Tensix Neo as a versatile solution in the landscape of AI technology.

Tenstorrent
TSMC
20nm, 22nm
AI Processor, CPU, DSP Core, IoT Processor, Multiprocessor / DSP, Network on Chip, Processor Core Dependent, Processor Core Independent, Processor Cores
View Details

CTAccel Image Processor on Intel Agilex FPGA

The CTAccel Image Processor on Intel Agilex FPGA is designed to handle high-performance image processing by capitalizing on the robust capabilities of Intel's Agilex FPGAs. These FPGAs, leveraging the 10 nm SuperFin process technology, are ideal for applications demanding high performance, power efficiency, and compact sizes. Featuring advanced DSP blocks and high-speed transceivers, this IP thrives in accelerating image processing tasks that are typically computational-intensive when executed on CPUs. One of the main advantages is its ability to significantly enhance image processing throughput, achieving up to 20 times the speed while maintaining reduced latency. This performance prowess is coupled with low power consumption, leading to decreased operational and maintenance costs due to fewer required server instances. Additionally, the solution is fully compatible with mainstream image processing software, facilitating seamless integration and leveraging existing software investments. The adaptability of the FPGA allows for remote reconfiguration, ensuring that the IP can be tailored to specific image processing scenarios without necessitating a server reboot. This ease of maintenance, combined with a substantial boost in compute density, underscores the IP's suitability for high-demand image processing environments, such as those encountered in data centers and cloud computing platforms.

CTAccel Ltd.
Intel Foundry
12nm
AI Processor, DLL, Graphics & Video Modules, Image Conversion, JPEG, JPEG 2000, Processor Core Independent, Vision Processor
View Details

GSHARK

GSHARK is a high-performance GPU IP designed to accelerate graphics on embedded devices. Known for its extreme power efficiency and seamless integration, this GPU IP significantly reduces CPU load, making it ideal for use in devices like digital cameras and automotive systems. Its remarkable track record of over one hundred million shipments underscores its reliability and performance. Engineered with TAKUMI's proprietary architecture, GSHARK integrates advanced rendering capabilities. This architecture supports real-time, on-the-fly graphics processing similar to that found in PCs, smartphones, and gaming consoles, ensuring a rich user experience and efficient graphics applications. This IP excels in environments where power consumption and performance balance are crucial. GSHARK is at the forefront of embedded graphics solutions, providing significant improvements in processing speed while maintaining low energy usage. Its architecture easily handles demanding graphics rendering tasks, adding considerable value to any embedded system it is integrated into.

TAKUMI Corporation
GPU, Processor Core Independent
View Details

CTAccel Image Processor on Alveo U200

The CTAccel Image Processor for Xilinx's Alveo U200 is a FPGA-based accelerator aimed at enhancing image processing workloads in server environments. Utilizing the powerful capabilities of the Alveo U200 FPGA, this processor dramatically boosts throughput and reduces processing latency for data centers. The accelerator can vastly increase image processing speed, up to 4 to 6 times that of traditional CPUs, and decrease latency likewise, ensuring that compute density in a server setting is significantly boosted. This performance uplift enables data centers to lower maintenance and operational costs due to reduced hardware requirements. Furthermore, this IP maintains full compatibility with popular image processing software like OpenCV and ImageMagick, ensuring smooth adaptation for existing workflows. The advanced FPGA partial reconfiguration technology allows for dynamic updates and adjustments, increasing the IP's pragmatism for a wide array of image-related applications and improving overall performance without the need for server reboots.

CTAccel Ltd.
LFoundry
22nm
AI Processor, DLL, Graphics & Video Modules, Image Conversion, JPEG, JPEG 2000, Processor Core Independent, Vision Processor
View Details

Azurite Core-hub

The Azurite Core-hub by InCore Semiconductors is a sophisticated solution designed to offer scalable RISC-V SoCs with high-speed secure interconnect capabilities. This processor is tailored for performance-demanding applications, ensuring that systems maintain robust security while executing tasks at high speeds. Azurite leverages advanced interconnect technologies to enhance the communication between components within a SoC, making it ideal for industries that require rapid data transfer and high processing capabilities. The core is engineered to be scalable, supporting a wide range of applications from edge AI to functional safety systems, adapting seamlessly to various industry needs. Engineered with a focus on security, the Azurite Core-hub incorporates features that protect data integrity and system operation in a dynamic technological landscape. This makes it a reliable choice for companies seeking to integrate advanced RISC-V architectures into their security-focused applications, offering not just innovation but also peace of mind with its secure design.

InCore Semiconductors
AI Processor, CPU, Microcontroller, Processor Core Dependent, Processor Core Independent, Processor Cores
View Details

Codasip RISC-V BK Core Series

The Codasip RISC-V BK Core Series is designed to offer highly performant solutions suitable for a range of tasks from embedded applications to more demanding compute environments. By leveraging the RISC-V architecture, the BK Core Series provides a balance of power efficiency and processing capability, which is ideal for IoT edge applications and sensor controllers. The series is built around the philosophy of flexibility, allowing for modifications and enhancements to meet specific application requirements, including the integration of custom instructions to accommodate special workloads. This series also supports functional safety and security measures as outlined by industry standards, ensuring a robust foundation for critical applications.

Codasip
AI Processor, CPU, DSP Core, IoT Processor, Microcontroller, Processor Core Dependent, Processor Core Independent, Processor Cores
View Details

ISPido on VIP Board

ISPido on VIP Board is a customized runtime solution tailored for Lattice Semiconductors’ Video Interface Platform (VIP) board. This setup enables real-time image processing and provides flexibility for both automated configuration and manual control through a menu interface. Users can adjust settings via histogram readings, select gamma tables, and apply convolutional filters to achieve optimal image quality. Equipped with key components like the CrossLink VIP input bridge board and ECP5 VIP Processor with ECP5-85 FPGA, this solution supports dual image sensors to produce a 1920x1080p HDMI output. The platform enables dynamic runtime calibration, providing users with interface options for active parameter adjustments, ensuring that image settings are fine-tuned for various applications. This system is particularly advantageous for developers and engineers looking to integrate sophisticated image processing capabilities into their devices. Its runtime flexibility and comprehensive set of features make it a valuable tool for prototyping and deploying scalable imaging solutions.

DPControl
18 Categories
View Details

Ncore Cache Coherent Interconnect

Arteris's Ncore Cache Coherent Interconnect IP addresses the complex challenges of multi-core ASIC development, offering a scalable, highly configurable solution for coherent network-on-chip designs. This IP supports multiple protocols, including Arm and RISC-V, and is engineered to comply with ISO 26262 for safety-critical applications. Ncore enables seamless communication and cache coherence across varied processor cores, enhancing performance while meeting stringent functional safety standards. Its capability to automate Fault Modes Effects and Diagnostic Analysis (FMEDA) further simplifies safety compliance, proving its value in advanced SoCs where reliability and high throughput are critical.

Arteris
802.16 / WiMAX, AMBA AHB / APB/ AXI, CAN XL, CAN-FD, CPU, Error Correction/Detection, Network on Chip, Processor Core Independent, SATA, Standard cell, WMV
View Details

General Purpose Accelerator (Aptos)

The General Purpose Accelerator (Aptos) from Ascenium stands out as a redefining force in the realm of CPU technology. It seeks to overcome the limitations of traditional CPUs by providing a solution that tackles both performance inefficiencies and high energy demands. Leveraging compiler-driven architecture, this accelerator introduces a novel approach by simplifying CPU operations, making it exceptionally suited for handling generic code. Notably, it offers compatibility with the LLVM compiler, ensuring a wide range of applications can be adapted seamlessly without rewrites. The Aptos excels in performance by embracing a highly parallel yet simplified CPU framework that significantly boosts efficiency, reportedly achieving up to four times the performance of cutting-edge CPUs. Such advancements cater not only to performance-oriented tasks but also substantially mitigate energy consumption, providing a dual benefit of cost efficiency and reduced environmental impact. This makes Aptos a valuable asset for data centers seeking to optimize their energy footprint while enhancing computational capabilities. Additionally, the Aptos architecture supports efficient code execution by resolving tasks predominantly at compile-time, allowing the processor to handle workloads more effectively. This allows standard high-level language software to run with improved efficiency across diverse computing environments, aligning with an overarching goal of greener computing. By maximizing operational efficiency and reducing carbon emissions, Aptos propels Ascenium into a leading position in the sustainable and high-performance computing sector.

Ascenium
TSMC
10nm, 12nm
CPU, Processor Core Dependent, Processor Core Independent, Processor Cores, Standard cell
View Details

RISCV SoC - Quad Core Server Class

Dyumnin Semiconductors' RISCV SoC is a robust solution built around a 64-bit quad-core server-class RISC-V CPU, designed to meet advanced computing demands. This chip is modular, allowing for the inclusion of various subsystems tailored to specific applications. It integrates a sophisticated AI/ML subsystem that features an AI accelerator tightly coupled with a TensorFlow unit, streamlining AI operations and enhancing their efficiency. The SoC supports a multimedia subsystem equipped with IP for HDMI, Display Port, and MIPI, as well as camera and graphic accelerators for comprehensive multimedia processing capabilities. Additionally, the memory subsystem includes interfaces for DDR, MMC, ONFI, NorFlash, and SD/SDIO, ensuring compatibility with a wide range of memory technologies available in the market. This versatility makes it a suitable choice for devices requiring robust data storage and retrieval capabilities. To address automotive and communication needs, the chip's automotive subsystem provides connectivity through CAN, CAN-FD, and SafeSPI IPs, while the communication subsystem supports popular protocols like PCIe, Ethernet, USB, SPI, I2C, and UART. The configurable nature of this SoC allows for the adaptation of its capabilities to meet specific end-user requirements, making it a highly flexible tool for diverse applications.

Dyumnin Semiconductors
26 Categories
View Details

Trion FPGAs - Edge and IoT Solution

Trion FPGAs by Efinix are engineered for the fast-paced edge and IoT markets. Built on a 40 nm process, these FPGAs offer a wide range of logic density from 4K to 120K logic elements. They bring power-performance-area advantages for general-purpose custom logic applications, including mobile and IoT markets, while also enhancing computing capabilities in emerging technologies such as deep learning and edge computing. The Trion family is known for its small packages, which enable its deployment in highly integrated systems. Features such as the DDR DRAM Controller and MIPI CSI-2 Controller are hardened into the architecture, ensuring smooth data management and transfer in applications that demand real-time processing. This makes Trion FPGAs an excellent choice for various industrial, medical, and consumer applications where space and power efficiency are critical. With a focus on longevity, Efinix supports Trion FPGAs with a stable product lifecycle, aligning with market requirements for dependable, production-ready solutions. These FPGAs are versatile enough to serve applications in edge computing, video processing, industrial automation, and more, offering a complete system solution with their embedded interfaces and soft processor systems.

Efinix, Inc.
Renesas
40nm
2D / 3D, 3GPP-5G, AI Processor, Audio Processor, CPU, Embedded Memories, Processor Core Independent, RLDRAM Controller, Sensor
View Details

BlueLynx Chiplet Interconnect

The BlueLynx Chiplet Interconnect is a sophisticated die-to-die interconnect solution that offers industry-leading performance and flexibility for both advanced and conventional packaging applications. As an adaptable subsystem, BlueLynx supports the integration of Universal Chiplet Interconnect Express (UCIe) as well as Bunch of Wires (BoW) standards, facilitating high bandwidth capabilities essential for contemporary chip designs.\n\nBlueLynx IP emphasizes seamless connectivity to on-die buses and network-on-chip (NoCs) using standards such as AMBA, AXI, and ACE among others, thereby accelerating the design process from system-on-chip (SoC) architectures to chiplet-based designs. This innovative approach not only allows for faster deployment but also mitigates development risks through a predictable and silicon-friendly design process with comprehensive support for rapid first-pass silicon success.\n\nWith BlueLynx, designers can take advantage of a highly optimized performance per watt, offering customizable configurations tailored to specific application needs across various markets like AI, high-performance computing, and mobile technologies. The IP is crafted to deliver outstanding bandwidth density and energy efficiency, bridging the requirements of advanced nodal technologies with compatibility across several foundries, ensuring extensive applicability and cost-effectiveness for diverse semiconductor solutions.

Blue Cheetah Analog Design, Inc.
TSMC
4nm, 7nm, 10nm, 12nm, 16nm
AMBA AHB / APB/ AXI, Clock Synthesizer, D2D, Gen-Z, IEEE1588, Interlaken, MIPI, Modulation/Demodulation, Network on Chip, PCI, Processor Core Independent, VESA, VGA
View Details

PACE - Photonic Arithmetic Computing Engine

The PACE Photonic Arithmetic Computing Engine from Lightelligence represents a paradigm shift in computing technologies. By utilizing photonic processes, this product significantly boosts computing speeds while maintaining energy efficiency. PACE is designed to leverage the inherent capabilities of photonics to perform high-speed arithmetic calculations, which are essential for complex data processing tasks. It's an ideal solution for industries demanding rapid and intensive computational power without the typical energy overhead.<br> <br> This advanced engine is central to the development of next-generation computing environments, where performance metrics exceed traditional expectations. By converting light signals into computing potential, PACE ensures that intensive processes such as AI computations, data analyses, and real-time processing are handled more efficiently. This product is tailored for enterprises seeking to minimize latency and enhance throughput across various applications.<br> <br> PACE not only meets the requirements of current computational demands but also sets the stage for future innovations in the field. It's a promising tool for developers and researchers aiming to explore the unexplored realms of digital capabilities, fostering an era of optical computing that's faster and more efficient than ever before. This makes PACE an indispensable component in both current and upcoming technological advancements.

Lightelligence
2D / 3D, AI Processor, Building Blocks, Coprocessor, CPU, JESD 204A / JESD 204B, Processor Core Independent, Vision Processor
View Details

SiFive Performance

The SiFive Performance family is an embodiment of high-efficiency computing, tailored to deliver maximum throughput across various applications. Designed with a 64-bit out-of-order architecture, these processors are equipped with up to 256-bit vector support, making them proficient in handling complex data and multimedia processing tasks critical for data centers and AI applications. The Performance cores range from 3-wide to 6-wide out-of-order models, capable of integrating up to two vector engines dedicated to AI workload optimizations. This setup provides an excellent balance of energy efficiency and computing power, supporting diverse applications ranging from web servers and network storage to consumer electronics requiring smart capabilities. Focused on maximizing performance while minimizing power usage, the Performance family allows developers to customize and optimize processing capabilities to match specific use-cases. This adaptability, combined with high efficiency, renders the Performance line a fitting choice for modern computational tasks that demand both high throughput and energy conservation.

SiFive, Inc.
CPU, Multiprocessor / DSP, Processor Core Dependent, Processor Core Independent, Processor Cores, Vision Processor
View Details

Network on Chip (NOC-X)

Network on Chip (NOC-X) by Extoll represents a critical advancement in the interconnect domain, designed to manage the complexities of chiplet-based architectures. NOC-X is tailored to facilitate efficient communication within multi-core systems, providing a scalable and robust solution that addresses the intricate demands of modern processing units. This technology is engineered to optimize data flow across chiplets, ensuring low latency and high throughput. Its architecture is rooted in advanced digital design principles that support the seamless integration of various processing elements, enhancing system performance and reliability. This interconnect framework caters to the broad application spectrum in contemporary digital systems, from enterprise-level solutions to consumer electronics. The NOC-X not only improves interchip communication but also enhances overall energy efficiency, aligning with Extoll’s commitment to ultra-low power solutions. By providing a flexible and adaptable interconnect option, NOC-X supports the creation of expandable systems that can evolve alongside advancing technologies, thus meeting the long-term goals of cost-effectiveness and sustainability in the semiconductor space.

Extoll GmbH
Network on Chip, Processor Core Independent
View Details

UltraLong FFT

The UltraLong FFT is designed specifically for handling lengthy data sequences and is optimized for Xilinx FPGAs. This core utilizes external memory to enable the processing of very large block sizes, suitable for applications requiring extensive data handling. Performance is typically constrained by the bandwidth of the external memory, making this a robust option for demanding applications where memory resources are a pivotal consideration. By leveraging Dillon Engineering's sophisticated ParaCore Architect utility, the UltraLong FFT Core is tailored to individual project needs. This core provides engineers with a flexible tool, capable of adapting to variable lengths and data throughput requirements. As such, it plays a vital role in numerous fields including astrophysics and remote sensing, where large-scale data manipulation is essential. The core's architecture is finely tuned to achieve optimal data throughput while balancing memory usage. This makes it highly desirable in scenarios where efficiency and scale are crucial, enabling extensive and complex computations to be conducted seamlessly on FPGA platforms.

Dillon Engineering, Inc.
GLOBALFOUNDRIES, TSMC
40nm
GPU, Multiprocessor / DSP, PLL, Processor Core Independent, Wireless Processor
View Details

Digital Radio (GDR)

The Digital Radio (GDR) from GIRD Systems is an advanced software-defined radio (SDR) platform that offers extensive flexibility and adaptability. It is characterized by its multi-channel capabilities and high-speed signal processing resources, allowing it to meet a diverse range of system requirements. Built on a core single board module, this radio can be configured for both embedded and standalone operations, supporting a wide frequency range. The GDR can operate with either one or two independent transceivers, with options for full or half duplex configurations. It supports single channel setups as well as multiple-input multiple-output (MIMO) configurations, providing significant adaptability in communication scenarios. This flexibility makes it an ideal choice for systems that require rapid reconfiguration or scalability. Known for its robust construction, the GDR is designed to address challenging signal processing needs in congested environments, making it suitable for a variety of applications. Whether used in defense, communications, or electronic warfare, the GDR's ability to seamlessly switch configurations ensures it meets the evolving demands of modern communications technology.

GIRD Systems, Inc.
3GPP-5G, 3GPP-LTE, 802.11, Coder/Decoder, CPRI, DSP Core, Ethernet, Multiprocessor / DSP, Processor Core Independent
View Details

Software-Defined High PHY

The Software-Defined High PHY offered by AccelerComm is a flexible solution designed for ARM processor architectures. This IP enables high performance across various platforms, optimizing capacity and power utilization based on application demands. By embodying a software-defined approach, it affords users the versatility to either integrate it with hardware acceleration or operate it as a standalone solution, depending on specific project needs. This IP underscores AccelerComm's focus on platform independence while ensuring seamless integration across diverse systems. The Software-Defined High PHY is equipped to handle high throughput and low latency requirements, making it ideal for applications that demand dynamic performance adjustments. It allows for seamless blending of hardware and software, delivering a balance between performance and resource consumption. This makes the Software-Defined High PHY an ideal choice for companies looking to implement scalable, adaptable wireless communication solutions with efficiency at their core.

AccelerComm Limited
3GPP-5G, 3GPP-LTE, AMBA AHB / APB/ AXI, Multiprocessor / DSP, Processor Core Independent
View Details

RV32EC_P2 Processor Core

The RV32EC_P2 core is a streamlined 2-stage pipeline RISC-V processor core aimed at small, low-power embedded applications. This processor core is designed to run only trusted firmware and can be implemented in both ASIC and FPGA-based design flows. It is compliant with RISC-V User-Level ISA V2.2, incorporating standard compressed instructions to minimize code size and optional integer multiplication and division instructions for flexibility. With a simple machine-mode privileged architecture, it supports direct physical memory addressing, along with an external interrupt controller for expanded interrupt handling. The core also integrates tightly-coupled memory interfaces and a low-power idle state option, making it highly adaptable for various low-energy applications.

IQonIC Works
Audio Processor, Coprocessor, CPU, Microcontroller, Processor Core Dependent, Processor Core Independent, Processor Cores
View Details

NeuroSense AI Chip for Wearables

The NeuroSense is a compact AI chip designed specifically for wearable devices, featuring neuromorphic analog signal processing technology. Its main focus lies in resolving common challenges faced by wearable tech, such as high power consumption, and limited battery life. By enabling highly accurate heart rate monitoring and activity recognition, this chip facilitates better fitness tracking without excessively draining battery resources. The NeuroSense's capability of operating independently from cloud connections addresses significant privacy concerns and data latency issues. It excels in delivering enhanced accuracy in heart rate measurements by utilizing a simple photoplethysmogram (PPG) configuration, which involves minimalistic hardware components like two LEDs and one photodiode. Through this setup, it achieves precision in bio-signal extraction far beyond conventional algorithmic methods, particularly when the wearer is in motion. Furthermore, the NeuroSense empowers wearables with advanced features like learning and recognizing user-specific activity patterns. With ultra-low power consumption and a compact size, the NeuroSense enables manufacturers to preserve space within constrained wearable designs while simultaneously enhancing battery life—solving a key concern in the realm of constantly operating smart devices.

Polyn Technology Ltd.
CPU, Input/Output Controller, IoT Processor, Microcontroller, Processor Core Independent, Security Protocol Accelerators, Vision Processor
View Details

CTAccel Image Processor on AWS

CTAccel's Image Processor for AWS offers a powerful image processing acceleration solution as part of Amazon's cloud infrastructure. This FPGA-based processor is available as an Amazon Machine Image (AMI) and enables customers to significantly enhance their image processing capabilities within the cloud environment. The AWS-based accelerator provides a remarkable tenfold increase in image processing throughput and similar reductions in computational latency, positively impacting Total Cost of Ownership (TCO) by reducing infrastructure needs and improving operational efficiency. These enhancements are crucial for applications requiring intensive image analysis and processing. Moreover, the processor supports a variety of image enhancement functions such as JPEG thumbnail generation and color adjustments, making it suitable for diverse cloud-based processing scenarios. Its integration within the AWS ecosystem ensures that users can easily deploy and manage these advanced processing capabilities across various imaging workflows with minimal disruption.

CTAccel Ltd.
All Foundries
All Process Nodes
AI Processor, DLL, Graphics & Video Modules, Image Conversion, JPEG, JPEG 2000, Processor Core Independent, Vision Processor
View Details

FlexWay Interconnect

Designed for versatile applications in the IoT and microcontroller markets, the FlexWay Interconnect by Arteris is tailored to support cost-efficient yet high-performing devices. It features simple elements derived from intuitive algorithms, positioning it as ideal for small to medium scale SoC implementations. Despite its emphasis on power efficiency, FlexWay does not compromise on bandwidth or integration ability. It's engineered for dynamic environments, integrating multiple protocols and offering robust performance management capabilities, making it suitable for both constrained power designs and those requiring flexibility in topology.

Arteris
AMBA AHB / APB/ AXI, Network on Chip, Processor Core Independent, SATA, WMV
View Details

iCan PicoPop® System on Module

The iCan PicoPop® is a sophisticated System on Module (SOM) based on Xilinx's Zynq UltraScale+. This miniaturized module is pivotal in simulations requiring high-performance processes like video signal processing within aerospace applications. It serves as the backbone for complex embedded systems, ensuring reliable and efficient operation in demanding environments.

Oxytronic
Building Blocks, CPU, DSP Core, Fibre Channel, LCD Controller, Processor Core Dependent, Processor Core Independent, Standard cell, Wireless Processor
View Details

Tyr AI Processor Family

The Tyr AI Processor Family is designed around versatile programmability and high performance for AI and general-purpose processing. It consists of variants such as Tyr4, Tyr2, and Tyr1, each offering a unique performance profile optimized for different operational scales. These processors are fully programmable and support high-level programming throughout, ensuring they meet diverse computing needs with precision. Each member of the Tyr family features distinct core configurations, tailored for specific throughput and performance needs. The top-tier Tyr4 boasts 8 cores with a peak capability of 1600 Tflops when leveraging fp8 tensor cores, making it suitable for demanding AI tasks. Tyr2 and Tyr1 scale down these resources to 4 and 2 cores, respectively, achieving proportional efficiency and power savings. All models incorporate substantial on-chip memory, optimizing data handling and execution efficiency without compromising on power use. Moreover, the Tyr processors adapt AI processes automatically on a layer-by-layer basis to enhance implementation efficiency. This adaptability, combined with their near-theory performance levels, renders them ideal for high-throughput AI workloads that require flexible execution and dependable scalability.

VSORA
AI Processor, CAN XL, DSP Core, Interleaver/Deinterleaver, Multiprocessor / DSP, Processor Core Dependent, Processor Core Independent, Vision Processor
View Details

VisualSim Architect

VisualSim Architect is an advanced modeling and simulation tool designed for system engineers to explore and analyze performance, power, and functionality of electronic systems. This platform supports a multi-domain model of computation that is capable of simulating a wide range of devices including processors, memory storage, wireless systems, and semiconductor buses. Utilizing an XML database, VisualSim Architect allows for flexible model creation, easy integration across distributed systems, and supports real-time adjustments and batch processing for comprehensive system analysis. The platform boasts extensive libraries for various types of components such as hardware, software, resource management, and traffic control, each designed to streamline model construction and enable thorough exploration across diverse applications. Users benefit from the ability to examine internal logics, manage buffers, and accurately model functionalities to ensure all components meet industry specifications. These IP blocks can be customized and adjusted in real time to fit specific project requirements. VisualSim Architect is equipped with robust reporting features that provide essential insights into system utilization, delay metrics, and advanced cache performance analyses. This tool is designed to be user-friendly, offering a graphical environment for model construction and validation. The software is compatible with major operating systems including Windows, Linux, and Mac OS X, empowering users to leverage its capabilities irrespective of their technical environment.

Mirabilis Design
AMBA AHB / APB/ AXI, CPU, Multiprocessor / DSP, Peripheral Controller, Processor Core Dependent, Processor Core Independent
View Details
Load more
Sign up to Silicon Hub to buy and sell semiconductor IP

Sign Up for Silicon Hub

Join the world's most advanced semiconductor IP marketplace!

It's free, and you'll get all the tools you need to discover IP, meet vendors and manage your IP workflow!

Sign up to Silicon Hub to buy and sell semiconductor IP

Welcome to Silicon Hub

Join the world's most advanced AI-powered semiconductor IP marketplace!

It's free, and you'll get all the tools you need to advertise and discover semiconductor IP, keep up-to-date with the latest semiconductor news and more!

Plus we'll send you our free weekly report on the semiconductor industry and the latest IP launches!

Switch to a Silicon Hub buyer account to buy semiconductor IP

Switch to a Buyer Account

To evaluate IP you need to be logged into a buyer profile. Select a profile below, or create a new buyer profile for your company.

Add new company

Switch to a Silicon Hub buyer account to buy semiconductor IP

Create a Buyer Account

To evaluate IP you need to be logged into a buyer profile. It's free to create a buyer profile for your company.

Chatting with Volt