All IPs > Platform Level IP > Processor Core Dependent
In the realm of semiconductor IP, the Processor Core Dependent category encompasses a variety of intellectual properties specifically designed to enhance and support processor cores. These IPs are tailored to work in harmony with core processors to optimize their performance, adding value by reducing time-to-market and improving efficiency in modern integrated circuits. This category is crucial for the customization and adaptation of processors to meet specific application needs, addressing both performance optimization and system complexity management.
Processor Core Dependent IPs are integral components, typically found in applications that require robust data processing capabilities such as smartphones, tablets, and high-performance computing systems. They can also be implemented in embedded systems for automotive, industrial, and IoT applications, where precision and reliability are paramount. By providing foundational building blocks that are pre-verified and configurable, these semiconductor IPs significantly simplify the integration process within larger digital systems, enabling a seamless enhancement of processor capabilities.
Products in this category may include cache controllers, memory management units, security hardware, and specialized processing units, all designed to complement and extend the functionality of processor cores. These solutions enable system architects to leverage existing processor designs while incorporating cutting-edge features and optimizations tailored to specific application demands. Such customizations can significantly boost the performance, energy efficiency, and functionality of end-user devices, translating into better user experiences and competitive advantages.
In essence, Processor Core Dependent semiconductor IPs represent a strategic approach to processor design, providing a toolkit for customization and optimization. By focusing on interdependencies within processing units, these IPs allow for the creation of specialized solutions that cater to the needs of various industries, ensuring the delivery of high-performance, reliable, and efficient computing solutions. As the demand for sophisticated digital systems continues to grow, the importance of these IPs in maintaining competitive edge cannot be overstated.
Axelera AI's Metis AIPU PCIe AI Accelerator Card is engineered to deliver top-tier inference performance in AI tasks aimed at heavy computational loads. This PCIe card is designed with the industry’s highest standards, offering exceptional processing power packaged onto a versatile PCIe form factor, ideal for integration into various computing systems including workstations and servers.<br><br>Equipped with a quad-core Metis AI Processing Unit (AIPU), the card delivers unmatched capabilities for handling complex AI models and extensive data streams. It efficiently processes multiple camera inputs and supports independent parallel neural network operations, making it indispensable for dynamic fields such as industrial automation, surveillance, and high-performance computing.<br><br>The card's performance is significantly enhanced by the Voyager SDK, which facilitates a seamless AI model deployment experience, allowing developers to focus on model logic and innovation. It offers extensive compatibility with mainstream AI frameworks, ensuring flexibility and ease of integration across diverse use cases. With a power-efficient design, this PCIe AI Accelerator Card bridges the gap between traditional GPU solutions and today's advanced AI demands.
Quadric's Chimera GPNPU is an adaptable processor core designed to respond efficiently to the demand for AI-driven computations across multiple application domains. Offering up to 864 TOPS, this licensable core seamlessly integrates into system-on-chip designs needing robust inference performance. By maintaining compatibility with all forms of AI models, including cutting-edge large language models and vision transformers, it ensures long-term viability and adaptability to emerging AI methodologies. Unlike conventional architectures, the Chimera GPNPU excels by permitting complete workload management within a singular execution environment, which is vital in avoiding the cumbersome and resource-intensive partitioning of tasks seen in heterogeneous processor setups. By facilitating a unified execution of matrix, vector, and control code, the Chimera platform elevates software development ease, and substantially improves code maintainability and debugging processes. In addition to high adaptability, the Chimera GPNPU capitalizes on Quadric's proprietary Compiler infrastructure, which allows developers to transition rapidly from model conception to execution. It transforms AI workflows by optimizing memory utilization and minimizing power expenditure through smart data storage strategies. As AI models grow increasingly complex, the Chimera GPNPU stands out for its foresight and capability to unify AI and DSP tasks under one adaptable and programmable platform.
The Veyron V2 CPU represents Ventana's second-generation RISC-V high-performance processor, designed for cloud, data center, edge, and automotive applications. This processor offers outstanding compute capabilities with its server-class architecture, optimized for handling complex, virtualized, and cloud-native workloads efficiently. The Veyron V2 is available as both IP for custom SoCs and as a complete silicon platform, ensuring flexibility for integration into various technological infrastructures. Emphasizing a modern architectural design, it includes full compliance with RISC-V RVA23 specifications, showcasing features like high Instruction Per Clock (IPC) and power-efficient architectures. Comprising of multiple core clusters, this CPU is capable of delivering superior AI and machine learning performance, significantly boosting throughput and energy efficiency. The Veyron V2's advanced fabric interconnects and extensive cache architecture provide the necessary infrastructure for high-performance applications, ensuring broad market adoption and versatile deployment options.
xcore.ai by XMOS is a groundbreaking solution designed to bring intelligent functionality to the forefront of semiconductor applications. It enables powerful real-time execution of AI, DSP, and control functionalities, all on a single, programmable chip. The flexibility of its architecture allows developers to integrate various computational tasks efficiently, making it a fitting choice for projects ranging from smart audio devices to automated industrial systems. With xcore.ai, XMOS provides the technology foundation necessary for swift deployment and scalable application across different sectors, delivering high performance in demanding environments.
The Metis AIPU M.2 Accelerator Module from Axelera AI provides an exceptional balance of performance and size, perfectly suited for edge AI applications. Designed for high-performance tasks, this module is powered by a single Metis AI Processing Unit (AIPU), which offers cutting-edge inference capabilities. With this M.2 card module, developers can easily integrate AI processing power into compact devices.<br><br>This module accommodates demanding AI workloads, enabling applications to perform complex computations with efficiency. Thanks to its low power consumption and versatile integration capabilities, it opens new possibilities for use in edge devices that require robust AI processing power. The Metis AIPU M.2 module supports a wide range of AI models and pipelines, facilitated by Axelera's Voyager SDK software platform which ensures seamless deployment and optimization of AI models.<br><br>The module's versatile design allows for streamlined concurrent multi-model processing, significantly boosting the device's AI capabilities without the need for external data centers. Additionally, it supports advanced quantization techniques, providing users with increased prediction accuracy for high-stakes applications.
The aiWare Neural Processing Unit (NPU) is an advanced hardware solution engineered for the automotive sector, highly regarded for its efficiency in neural network acceleration tailored for automated driving technologies. This NPU is designed to handle a broad scope of AI applications, including complex neural network models like CNNs and RNNs, offering scalability across diverse performance tiers from L2 to more demanding L4 systems. With its industry-leading efficiency, the aiWare hardware IP achieves up to 98% effectiveness over various automotive neural networks. It supports vast sensor configurations typical in automotive contexts, maintaining reliable performance under rigorous conditions validated by ISO 26262 ASIL B certification. aiWare is not only power-efficient but designed with a scalable architecture, providing up to 1024 TOPS, ensuring that it meets the demands of high-performance processing requirements. Furthermore, aiWare is meticulously crafted to facilitate integration into safety-critical environments, deploying high determinism in its operations. It minimizes external memory dependencies through an innovative dataflow approach, maximizing on-chip memory utilization and minimizing system power. Featuring extensive documentation for integration and customization, aiWare stands out as a crucial component for OEMs and Tier1s looking to optimize advanced driver-assist functionalities.
The SAKURA-II AI Accelerator by EdgeCortix is an advanced processor designed for energy-efficient, real-time AI inferencing. It supports complex generative AI models such as Llama 2 and Stable Diffusion with an impressive power envelope of just 8 watts, making it ideal for applications requiring swift, on-the-fly Batch=1 AI processing. While maintaining critical performance metrics, it can simultaneously run multiple deep neural network models, facilitated by its unique DNA core. The SAKURA-II stands out with its high utilization of AI compute resources, robust memory bandwidth, and sizable DRAM capacity options of up to 32GB, all in a compact form factor. With market-leading energy efficiency, the SAKURA-II supports diverse edge AI applications, from vision and language to audio, thanks to hardware-accelerated arbitrary activation functions and advanced power management features. Designed for ARM and other platforms, the SAKURA-II can be easily integrated into existing systems for deploying AI models and leveraging low power for demanding workloads. EdgeCortix's AI Accelerator excels with innovative features like sparse computing to optimize DRAM bandwidth and real-time data streaming for Batch=1 operations, ensuring fast and efficient AI computations. It offers unmatched adaptability in power management, enabling ultra-high efficiency modes for processing complex AI tasks while maintaining high precision and low latency operations.
The A25 processor model is a versatile CPU suitable for a variety of embedded applications. With its 5-stage pipeline and 32/64-bit architecture, it delivers high performance even with a low gate count, which translates to efficiency in power-sensitive environments. The A25 is equipped with Andes Custom Extensions that enable tailored instruction sets for specific application accelerations. Supporting robust high-frequency operations, this model shines in its ability to manage data prefetching and cache coherence in multicore setups, making it adept at handling complex processing tasks within constrained spaces.
RaiderChip's GenAI v1 is a pioneering hardware-based generative AI accelerator, designed to perform local inference at the Edge. This technology integrates optimally with on-premises servers and embedded devices, offering substantial benefits in privacy, performance, and energy efficiency over traditional hybrid AI solutions. The design of the GenAI v1 NPU streamlines the process of executing large language models by embedding them directly onto the hardware, eliminating the need for external components like CPUs or internet connections. With its ability to support complex models such as the Llama 3.2 with 4-bit quantization on LPDDR4 memory, the GenAI v1 achieves unprecedented efficiency in AI token processing, coupled with energy savings and reduced latency. What sets GenAI v1 apart is its scalability and cost-effectiveness, significantly outperforming competitive solutions such as Intel Gaudi 2, Nvidia's cloud GPUs, and Google's cloud TPUs in terms of memory efficiency. This solution maximizes the number of tokens generated per unit of memory bandwidth, thus addressing one of the primary limitations in generative AI workflow. Furthermore, the adept memory usage of GenAI v1 reduces the dependency on costly memory types like HBM, opening the door to more affordable alternatives without diminishing processing capabilities. With a target-agnostic approach, RaiderChip ensures the GenAI v1 can be adapted to various FPGAs and ASICs, offering configuration flexibility that allows users to balance performance with hardware costs. Its compatibility with a wide range of transformers-based models, including proprietary modifications, ensures GenAI v1's robust placement across sectors requiring high-speed processing, like finance, medical diagnostics, and autonomous systems. RaiderChip's innovation with GenAI v1 focuses on supporting both vanilla and quantized AI models, ensuring high computation speeds necessary for real-time applications without compromising accuracy. This capability underpins their strategic vision of enabling versatile and sustainable AI solutions across industries. By prioritizing integration ease and operational independence, RaiderChip provides a tangible edge in applying generative AI effectively and widely.
The GenAI v1-Q from RaiderChip brings forth a specialized focus on quantized AI operations, reducing memory requirements significantly while maintaining impressive precision and speed. This innovative accelerator is engineered to execute large language models in real-time, utilizing advanced quantization techniques such as Q4_K and Q5_K, thereby enhancing AI inference efficiency especially in memory-constrained environments. By offering a 276% boost in processing speed alongside a 75% reduction in memory footprint, GenAI v1-Q empowers developers to integrate advanced AI capabilities into smaller, less powerful devices without sacrificing operational quality. This makes it particularly advantageous for applications demanding swift response times and low latency, including real-time translation, autonomous navigation, and responsive customer interactions. The GenAI v1-Q diverges from conventional AI solutions by functioning independently, free from external network or cloud auxiliaries. Its design harmonizes superior computational performance with scalability, allowing seamless adaptation across variegated hardware platforms including FPGAs and ASIC implementations. This flexibility is crucial for tailoring performance parameters like model scale, inference velocity, and power consumption to meet exacting user specifications effectively. RaiderChip's GenAI v1-Q addresses crucial AI industry needs with its ability to manage multiple transformer-based models and confidential data securely on-premises. This opens doors for its application in sensitive areas such as defense, healthcare, and financial services, where confidentiality and rapid processing are paramount. With GenAI v1-Q, RaiderChip underscores its commitment to advancing AI solutions that are both environmentally sustainable and economically viable.
The Hanguang 800 AI Accelerator is a high-performance AI processor developed to meet the complex demands of artificial intelligence workloads. This accelerator is engineered with cutting-edge AI processing capabilities, enabling rapid data analysis and machine learning model inference. Designed for flexibility, the Hanguang 800 delivers superior computation speed and energy efficiency, making it an optimal choice for AI applications in a variety of sectors, from data centers to edge computing. By supporting high-volume data throughput, it enables organizations to achieve significant advantages in speed and efficiency, facilitating the deployment of intelligent solutions.
The NuLink Die-to-Die PHY for Standard Packaging by Eliyan offers an innovative solution for high-performance interconnects between die on the same package. This technology significantly boosts bandwidth and energy efficiency, using industry-standard organic/laminate substrates to simplify design and reduce costs. It leverages a unique implementation that negates the need for more expensive silicon interposers or silicon bridges while maintaining exceptional signal integrity and compact form factors. With conventional bump pitches ranging from 100um to 130um, these PHY units support various industry standards such as UCIe, BoW, UMI, and SBD, delivering a versatile platform suitable for a wide array of applications. This flexibility ensures it meets the rigorous demands of data-centric and performance-oriented computing needs, with optimal performance observed at advanced process nodes like 5nm and below. Eliyan's NuLink PHY further breaks technological barriers by delivering synchronous unidirectional and bidirectional communication capabilities, achieving data rates up to 64 Gbps. Its design supports 32 transmission and receiving lanes to ensure robust data management in complex systems, making it an ideal solution for today's and future's data-heavy applications.
The RISC-V Core-hub Generators from InCore are tailored for developers who need advanced control over their core architectures. This innovative tool enables users to configure core-hubs precisely at the instruction set and microarchitecture levels, allowing for optimized design and functionality. The platform supports diverse industry applications by facilitating the seamless creation of scalable and customizable RISC-V cores. With the RISC-V Core-hub Generators, InCore empowers users to craft their own processor solutions from the ground up. This flexibility is pivotal for businesses looking to capitalize on the burgeoning RISC-V ecosystem, providing a pathway to innovation with reduced risk and cost. Incorporating feedback from leading industry partners, these generators are designed to lower verification costs while accelerating time-to-market for new designs. Users benefit from InCore's robust support infrastructure and a commitment to simplifying complex chip design processes. This product is particularly beneficial for organizations aiming to integrate RISC-V technology efficiently into their existing systems, ensuring compatibility and enhancing functionality through intelligent automation and state-of-the-art tools.
AndesCore Processors offer a robust lineup of high-performance CPUs tailored for diverse market segments. Employing the AndeStar V5 instruction set architecture, these cores uniformly support the RISC-V technology. The processor family is classified into different series, including the Compact, 25-Series, 27-Series, 40-Series, and 60-Series, each featuring unique architectural advances. For instance, the Compact Series specializes in delivering compact, power-efficient processing, while the 60-Series is optimized for high-performance out-of-order execution. Additionally, AndesCore processors extend customization through Andes Custom Extension, which allows users to define specific instructions to accelerate application-specific tasks, offering a significant edge in design flexibility and processing efficiency.
The NMP-750 is AiM Future's powerful edge computing accelerator designed specifically for high-performance tasks. With up to 16 TOPS of computational throughput, this accelerator is perfect for automotive, AMRs, UAVs, as well as AR/VR applications. Fitted with up to 16 MB of local memory and featuring RISC-V or Arm Cortex-R/A 32-bit CPUs, it supports diverse data processing requirements crucial for modern technological solutions. The versatility of the NMP-750 is displayed in its ability to manage complex processes such as multi-camera stream processing and spectral efficiency management. It is also an apt choice for applications that require energy management and building automation, demonstrating exceptional potential in smart city and industrial setups. With its robust architecture, the NMP-750 ensures seamless integration into systems that need to handle large data volumes and support high-speed data transmission. This makes it ideal for applications in telecommunications and security where infrastructure resilience is paramount.
The Azurite Core-hub by InCore Semiconductors is a sophisticated solution designed to offer scalable RISC-V SoCs with high-speed secure interconnect capabilities. This processor is tailored for performance-demanding applications, ensuring that systems maintain robust security while executing tasks at high speeds. Azurite leverages advanced interconnect technologies to enhance the communication between components within a SoC, making it ideal for industries that require rapid data transfer and high processing capabilities. The core is engineered to be scalable, supporting a wide range of applications from edge AI to functional safety systems, adapting seamlessly to various industry needs. Engineered with a focus on security, the Azurite Core-hub incorporates features that protect data integrity and system operation in a dynamic technological landscape. This makes it a reliable choice for companies seeking to integrate advanced RISC-V architectures into their security-focused applications, offering not just innovation but also peace of mind with its secure design.
RAIV represents Siliconarts' General Purpose-GPU (GPGPU) offering, engineered to accelerate data processing across diverse industries. This versatile GPU IP is essential in sectors engaged in high-performance computing tasks, such as autonomous driving, IoT, and sophisticated data centers. With RAIV, Siliconarts taps into the potential of the fourth industrial revolution, enabling rapid computation and seamless data management. The RAIV architecture is poised to deliver unmatched efficiency in high-demand scenarios, supporting massive parallel processing and intricate calculations. It provides an adaptable framework that caters to the needs of modern computing, ensuring balanced workloads and optimized performance. Whether used for VR/AR applications or supporting the back-end infrastructure of data-intensive operations, RAIV is designed to meet and exceed industry expectations. RAIV’s flexible design can be tailored to enhance a broad spectrum of applications, promising accelerated innovation in sectors dependent on AI and machine learning. This GPGPU IP not only underscores Siliconarts' commitment to technological advancement but also highlights its capability to craft solutions that drive forward computational boundaries.
The N Class RISC-V CPU IP from Nuclei is tailored for applications where space efficiency and power conservation are paramount. It features a 32-bit architecture and is highly suited for microcontroller applications within the AIoT realm. The N Class processors are crafted to provide robust processing capabilities while maintaining a minimal footprint, making them ideal candidates for devices that require efficient power management and secure operations. By adhering to the open RISC-V standard, Nuclei ensures that these processors can be seamlessly integrated into various solutions, offering customizable options to fit specific system requirements.
The Maverick-2 Intelligent Compute Accelerator revolutionizes computing with its Intelligent Compute Architecture (ICA), delivering unparalleled performance and efficiency for HPC and AI applications. This innovative product leverages real-time adaptability, enabling it to optimize hardware configurations dynamically to match the specific demands of various software workloads. Its standout feature is the elimination of domain-specific languages, offering a universal solution for scientific and technical computing. Equipped with a robust developer toolchain that supports popular languages like C, C++, FORTRAN, and OpenMP, the Maverick-2 seamlessly integrates into existing workflows. This minimizes the need for code rewrites while maximizing developer productivity. By providing extensive support for emerging technologies such as CUDA and HIP/ROCm, Maverick-2 ensures that it remains a viable and potent solution for current and future computing challenges. Built on TSMC's advanced 5nm process, the accelerator incorporates HBM3E memory and high-bandwidth PCIe Gen 5 interfaces, supporting demanding computations with remarkable efficiency. The Maverick-2 achieves a significant power performance advantage, making it ideal for data centers and research facilities aiming for greater sustainability without sacrificing computational power.
The Codasip RISC-V BK Core Series is renowned for integrating flexibility and performance scalability within a RISC-V framework. These cores are designed to cater to various application demands, from general-purpose computing to specialized tasks requiring high processing capability. The BK series supports customization that optimizes performance, power, and area based on different application scenarios. One notable feature of the BK Core Series is its ability to be tailored using Codasip Studio, which enables architects to modify microarchitectures and instruction sets efficiently. This customization is supported by a robust set of pre-verified options, ensuring quality and reliability across applications. The BK cores also boast energy efficiency, making them suitable for both power-sensitive and performance-oriented applications. Another advantage of the BK Core Series is its compatibility with a broad range of industry-standard tools and interfaces, which simplifies integration into existing systems and accelerates time to market. The series also emphasizes secure and safe design, aligning with industry standards for functional safety and security, thereby allowing integration into safety-critical environments.
The General Purpose Accelerator (Aptos) from Ascenium stands out as a redefining force in the realm of CPU technology. It seeks to overcome the limitations of traditional CPUs by providing a solution that tackles both performance inefficiencies and high energy demands. Leveraging compiler-driven architecture, this accelerator introduces a novel approach by simplifying CPU operations, making it exceptionally suited for handling generic code. Notably, it offers compatibility with the LLVM compiler, ensuring a wide range of applications can be adapted seamlessly without rewrites. The Aptos excels in performance by embracing a highly parallel yet simplified CPU framework that significantly boosts efficiency, reportedly achieving up to four times the performance of cutting-edge CPUs. Such advancements cater not only to performance-oriented tasks but also substantially mitigate energy consumption, providing a dual benefit of cost efficiency and reduced environmental impact. This makes Aptos a valuable asset for data centers seeking to optimize their energy footprint while enhancing computational capabilities. Additionally, the Aptos architecture supports efficient code execution by resolving tasks predominantly at compile-time, allowing the processor to handle workloads more effectively. This allows standard high-level language software to run with improved efficiency across diverse computing environments, aligning with an overarching goal of greener computing. By maximizing operational efficiency and reducing carbon emissions, Aptos propels Ascenium into a leading position in the sustainable and high-performance computing sector.
The NMP-350 is an endpoint accelerator designed to deliver the lowest power and cost efficiency in its class. Ideal for applications such as driver authentication and health monitoring, it excels in automotive, AIoT/sensors, and wearable markets. The NMP-350 offers up to 1 TOPS performance with 1 MB of local memory, and is equipped with a RISC-V or Arm Cortex-M 32-bit CPU. It supports multiple use-cases, providing exceptional value for integrating AI capabilities into various devices. NMP-350's architectural design ensures optimal energy consumption, making it particularly suited to Industry 4.0 applications where predictive maintenance is crucial. Its compact nature allows for seamless integration into systems requiring minimal footprint yet substantial computational power. With support for multiple data inputs through AXI4 interfaces, this accelerator facilitates enhanced machine automation and intelligent data processing. This product is a testament to AiM Future's expertise in creating efficient AI solutions, providing the building blocks for smart devices that need to manage resources effectively. The combination of high performance with low energy requirements makes it a go-to choice for developers in the field of AI-enabled consumer technology.
Designed to cater to AI-specific needs, SEMIFIVE’s AI Inference Platform provides tailored solutions that seamlessly integrate advanced technologies to optimize performance and efficiency. This platform is engineered to handle the rigorous demands of AI workloads through a well-integrated approach combining hardware and software innovations matched with AI acceleration features. The platform supports scalable AI models, delivering exceptional processing capabilities for tasks involving neural network inference. With a focus on maximizing throughput and efficiency, it facilitates real-time processing and decision-making, which is crucial for applications such as machine learning and data analytics. SEMIFIVE’s platform simplifies AI implementation by providing an extensive suite of development tools and libraries that accelerate design cycles and enhance comprehensive system performance. The incorporation of state-of-the-art caching mechanisms and optimized data flow ensures the platform’s ability to handle large datasets efficiently.
Syntacore’s SCR9 processor core stands out as a powerful force in handling high-performance computing tasks with its dual-issue out-of-order 12-stage pipeline. This core is engineered for environments that demand peak computational ability and robust pipeline execution, crucial for data-intense tasks such as AI and ML, enterprise applications, and network processing. The architecture is tailored to support extensive multicore and heterogeneous configurations, providing valuable tools for developers aiming to maximize workload efficiency and processing speed. The inclusion of a vector processing unit (VPU) underscores its capability to handle large datasets and complex calculations, while maintaining system integrity and coherence through its comprehensive cache management. With support for hypervisor functionalities and scalable Linux environments, the SCR9 continues to be a key strategic element in expanding the horizons of RISC-V-based applications. Syntacore’s extensive library of development resources further enriches the usability of this core, ensuring that its implementation remains smooth and effective across diverse technological landscapes.
The Time-Triggered Protocol (TTP) designed by TTTech is an advanced communication protocol meant to enhance the reliability of data transmission in critical systems. Developed in compliance with the SAE AS6003 standard, this protocol is ideally suited for environments requiring synchronized operations, such as aeronautics and high-stakes energy sectors. TTP allows for precise scheduling of communication tasks, creating a deterministic communication environment where the timing of data exchanges is predictable and stable. This predictability is crucial in eliminating delays and minimizing data loss in safety-critical applications. The protocol lays the groundwork for robust telecom infrastructures in airplanes and offers a high level of system redundancy and fault tolerance. TTTech’s TTP IP core is integral to their TTP-Controller ASICs and is designed to comply with stringent integrity and safety requirements, including those outlined in RTCA DO-254 / EUROCAE ED-80. The versatility of TTP allows it to be implemented across varying FPGA platforms, broadening its applicability to a wide range of safety-critical industrial systems.
The ISPido on VIP Board solution is designed for the Lattice Semiconductor's VIP (Video Interface Platform) board, offering real-time, high-quality image processing. It supports automatic configuration selection at boot, ensuring a balanced output or alternatively, it provides a menu interface for manual adjustments. Key features include input from two Sony IMX 214 sensors and output in HDMI format with 1920 x 1080p resolution using YCrCb 4:2:2 color space. This system supports run-time calibration via a serial port, allowing users to customize gamma tables, convolution filters, and other settings to match specific application needs. The innovative setup facilitates streamlined image processing for efficient deployment across applications requiring high-definition video processing.
Tailored for high efficiency, the NMP-550 accelerator advances performance in the fields of automotive, mobile, AR/VR, and more. Designed with versatility in mind, it finds applications in driver monitoring, video analytics, and security through its robust capabilities. Offering up to 6 TOPS of processing power, it includes up to 6 MB of local memory and a choice of RISC-V or Arm Cortex-M/A 32-bit CPU. In environments like drones, robotics, and medical devices, the NMP-550's enhanced computational skills allow for superior machine learning and AI functions. This is further supported by its ability to handle comprehensive data streams efficiently, making it ideal for tasks such as image analytics and fleet management. The NMP-550 exemplifies how AiM Future harnesses cutting-edge technology to develop powerful processors that meet contemporary demands for higher performance and integration into a multitude of smart technologies.
The AndeShape Platforms are designed to streamline system development by providing a diverse suite of IP solutions for SoC architecture. These platforms encompass a variety of product categories, including the AE210P for microcontroller applications, AE300 and AE350 AXI fabric packages for scalable SoCs, and AE250 AHB platform IP. These solutions facilitate efficient system integration with Andes processors. Furthermore, AndeShape offers a sophisticated range of development platforms and debugging tools, such as ADP-XC7K160/410, which reinforce the system design and verification processes, providing a comprehensive environment for the innovative realization of IoT and other embedded applications.
The RISCV SoC developed by Dyumnin Semiconductors is engineered with a 64-bit quad-core server-class RISCV CPU, aiming to bridge various application needs with an integrated, holistic system design. Each subsystem of this SoC, from AI/ML capabilities to automotive and multimedia functionalities, is constructed to deliver optimal performance and streamlined operations. Designed as a reference model, this SoC enables quick adaptation and deployment, significantly reducing the time-to-market for clients. The AI Accelerator subsystem enhances AI operations with its collaboration of a custom central processing unit, intertwined with a specialized tensor flow unit. In the multimedia domain, the SoC boasts integration capabilities for HDMI, Display Port, MIPI, and other advanced graphic and audio technologies, ensuring versatile application across various multimedia requirements. Memory handling is another strength of this SoC, with support for protocols ranging from DDR and MMC to more advanced interfaces like ONFI and SD/SDIO, ensuring seamless connectivity with a wide array of memory modules. Moreover, the communication subsystem encompasses a broad spectrum of connectivity protocols, including PCIe, Ethernet, USB, and SPI, crafting an all-rounded solution for modern communication challenges. The automotive subsystem, offering CAN and CAN-FD protocols, further extends its utility into automotive connectivity.
The Zhenyue 510 SSD Controller represents a pivotal advancement in solid-state drive technology, tailored to meet the rigorous demands of enterprise-grade storage solutions. It leverages state-of-the-art technology to deliver exceptional data throughput and reliability, ensuring swift data access and enhanced storage efficiency. This controller is engineered to minimize latency, making it highly suitable for environments where data speed and reliability are crucial, such as cloud computing and enterprise data centers. With the ability to handle large volumes of data effortlessly, the Zhenyue 510 SSD Controller sets new benchmarks for performance and energy efficiency in storage solutions.
The Dynamic Neural Accelerator II (DNA-II) by EdgeCortix is a versatile and powerful neural network IP core tailored for edge AI applications. Featuring run-time reconfigurable interconnects, it achieves high parallelism and efficiency essential for convolutional and transformer networks. DNA-II can be integrated with a variety of host processors, rendering it adaptable for a wide range of edge-based solutions that demand efficient processing capabilities at the core of AI advancements. This architecture allows real-time reconfiguration of data paths between DNA engines, optimizing parallelism while reducing on-chip memory bandwidth via a patented reconfigurable datapath. The architecture significantly enhances utilization rates and ensures fast processing through model parallelism, making it suitable for mission-critical tasks where low power consumption is paramount. DNA-II serves as the technological backbone of the SAKURA-II AI Accelerator, enabling it to execute generative AI models proficiently. This innovative IP core is engineered to mesh effortlessly with the MERA software stack, optimizing neural network operations through effective scheduling and resource distribution, representing a paradigm shift in how neural network tasks are managed and executed in real-time.
The Codasip L-Series DSP Core stands out for its ability to handle computationally intensive algorithms with high efficiency, targeting applications that require significant digital signal processing capabilities. The L-Series is tailored for precision tasks such as audio processing and complex mathematical computations where performance and accuracy are imperative. This series benefits from a versatile architecture that can be customized to enhance specific signal processing needs, powered by the Codasip Studio. Modifications can be made at both the architectural and ISA levels to ensure the processor aligns perfectly with the workload's demands, enhancing performance while maintaining a compact footprint. Furthermore, the L-Series DSP cores are equipped to deliver powerful processing potential while ensuring power efficiency, essential for battery-operated devices or environments with power constraints. This series is optimal for developers seeking to implement DSP solutions in various domains, leveraging RISC-V's open standard benefits coupled with Codasip's customization tools.
The iCan PicoPop® is a highly compact System on Module (SOM) based on the Zynq UltraScale+ MPSoC from Xilinx, suited for high-performance embedded applications in aerospace. Known for its advanced signal processing capabilities, it is particularly effective in video processing contexts, offering efficient data handling and throughput. Its compact size and performance make it ideal for integration into sophisticated systems where space and performance are critical.
The Veyron V1 is a high-performance RISC-V CPU designed to meet the rigorous demands of modern data centers and compute-intensive applications. This processor is tailored for cloud environments requiring extensive compute capabilities, offering substantial power efficiency while optimizing processing workloads. It provides comprehensive architectural support for virtualization and efficient task management with its robust feature set. Incorporating advanced RISC-V standards, the Veyron V1 ensures compatibility and scalability across a wide range of industries, from enterprise servers to high-performance embedded systems. Its architecture is engineered to offer seamless integration, providing an excellent foundation for robust, scalable computing designs. Equipped with state-of-the-art processing cores and enhanced vector acceleration, the Veyron V1 delivers unmatched throughput and performance management, making it suitable for use in diverse computing environments.
aiData is an automated data pipeline tailored for Advanced Driver-Assistance Systems (ADAS) and Autonomous Driving (AD). This system is crucial for processing and transforming extensive real-world driving data into meticulously annotated, training-ready datasets. Its primary focus is on efficiency and precision, significantly reducing the manual labor traditionally associated with data annotation. aiData dramatically speeds up the data preparation process, providing real-time feedback and minimizing data wastage. By employing the aiData Auto Annotator, the system offers superhuman precision in automatically identifying and labeling dynamic entities such as vehicles and pedestrians, achieving significant cost reductions. The implementation of AI-driven data curation and versioning ensures that only the most relevant data is used for model improvement, providing full traceability and customization throughout the data's lifecycle. The pipeline further includes robust metrics for automatically verifying new software outputs, ensuring that performance stays at an optimal level. With aiData, companies are empowered to streamline their ADAS and AD data workflows, ensuring rapid and reliable output from concept to application.
ISPido is a comprehensive image signal processing (ISP) pipeline that is fully configurable via the AXI4-LITE protocol. It features a complete ISP pipeline incorporating modules for defective pixel correction, color filter array interpolation using the Malvar-Cutler algorithm, and a series of image enhancements. These include convolution filters, auto-white balance, color correction matrix, gamma correction, and color space conversion between RGB and YCbCr formats. ISPido supports resolutions up to 7680x7680, ensuring compatibility with ultra-high-definition applications, up to 8K resolution systems. It is engineered to comply with the AMBA AXI4 standards, offering versatility and easy integration into various systems, whether for FPGA, ASIC, or other hardware configurations.
Specially engineered for the automotive industry, the NA Class IP by Nuclei complies with the stringent ISO26262 functional safety standards. This processor is crafted to handle complex automotive applications, offering flexibility and rigorous safety protocols necessary for mission-critical transportation technologies. Incorporating a range of functional safety features, the NA Class IP is equipped to ensure not only performance but also reliability and safety in high-stakes vehicular environments.
Trifecta-GPU design offers an exceptional computational power utilizing the NVIDIA RTX A2000 embedded GPU. With a focus on modular test and measurement, and electronic warfare markets, this GPU is capable of delivering 8.3 FP32 TFLOPS compute performance. It is tailored for advanced signal processing and machine learning, making it indispensable for modern, software-defined signal processing applications. This GPU is a part of the COTS PXIe/CPCIe modular family, known for its flexibility and ease of use. The NVIDIA GPU integration means users can expect robust performance for AI inference applications, facilitating quick deployment in various scenarios requiring advanced data processing. Incorporating the latest in graphical performance, the Trifecta-GPU supports a broad range of applications, from high-end computing tasks to graphics-intensive processes. It is particularly beneficial for those needing a reliable and powerful GPU for modular T&M and EW projects.
TUNGA is an advanced System on Chip (SoC) leveraging the strengths of Posit arithmetic for accelerated High-Performance Computing (HPC) and Artificial Intelligence (AI) tasks. The TUNGA SoC integrates multiple CRISP-cores, employing Posit as a core technology for real-number calculations. This multi-core RISC-V SoC is uniquely equipped with a fixed-point accumulator known as QUIRE, which allows for extremely precise computations across vectors as long as 2 billion entries. The TUNGA SoC includes programmable FPGA gates for enhancing field-critical functions. These gates are instrumental in speeding up data center services, offloading tasks from the CPU, and advancing AI training and inference efficiency using non-standard data types. TUNGA's architecture is tailored for applications demanding high precision, including cryptography and variable precision computing tasks, facilitating the transition towards next-generation arithmetic. In the computational ecology, TUNGA stands out by offering customizable features and rapid processing capabilities, making it suitable not only for typical data center functions but also for complex, precision-demanding workloads. By capitalizing on Posit arithmetic, TUNGA aims to deliver more efficient and powerful computational performance, reflecting a strategic advancement in handling complex data-oriented processes.
The RISC-V Processor Core from Fraunhofer IPMS is engineered for flexibility and versatility in addressing a plethora of computational tasks. Leveraging the open-source RISC-V architecture, this processor core is suitable for a wide range of applications, from consumer electronics to specialized industrial use cases. By offering a broad canvas for customization, it enables manufacturers to tailor the processor to specific market needs, aligning with industry trends of adaptable hardware design. This core supports high-performance computations while maintaining energy efficiency, which is imperative for modern applications that demand rigorous processing without compromising power efficiency. Its structure allows for easy integration into various system environments, providing manufacturers with the advantage of implementing advanced features rapidly. The RISC-V Processor Core is particularly valuable in research and prototyping scenarios, where its open and modular design accelerates innovation and development cycles. This adaptability ensures that developers can keep pace with the rapid technological evolution in areas like IoT, edge computing, and AI, offering a robust foundation for next-generation computing solutions.
The Prodigy Universal Processor by Tachyum is a versatile chip that merges the capabilities of CPUs, GPGPUs, and TPUs into a single architecture. This innovation is designed to cater to the needs of AI, HPC, and hyperscale data centers by delivering improved performance, energy efficiency, and server utilization. The chip functions as a general-purpose processor, facilitating various applications from hyperscale data centers to high-performance computing and private clouds. It boasts a seamless integration model, allowing existing software packages to run flawlessly on its uniquely designed instruction set architecture. By providing up to 18.5x increased performance and enhanced performance per watt, Prodigy stands out in the industry, tackling common issues like high power consumption and limited processor performance that currently hamper data centers. It comprises a coherent multiprocessor architecture that supports a wide range of AI and computing workloads, ultimately transforming data centers into universal computing hubs. The design not only aims to lower the total cost of ownership but also contributes to reducing carbon emissions through decreased energy requirements. Prodigy’s architecture supports a diverse range of SKUs tailored to specific markets, making it adaptable to various applications. Its flexibility and superior performance capabilities position it as a significant player in advancing sustainable, energy-efficient computational solutions worldwide. The processor's ability to handle complex AI tasks with minimal energy use underlines Tachyum's commitment to pioneering green technology in the semiconductor industry.
These customizable and power-efficient IP platforms are designed to accelerate the time-to-market for IoT products. Each platform includes essential building blocks for smart and secure IoT devices. They are available with ARM and RISC-V processors, supporting a range of applications such as beacons, smart sensors, and connected audio. Pre-validated and ready for integration, these platforms are the backbone for IoT device development, ensuring that prototypes transition smoothly to production with minimal power requirements and maximum efficiency.
Spectral CustomIP encompasses an expansive suite of specialized memory architectures, tailored for diverse integrated circuit applications. Known for breadth in memory compiler designs, Spectral offers solutions like Binary and Ternary CAMs, various Multi-Ported memories, Low Voltage SRAMs, and advanced cache configurations. These bespoke designs integrate either foundry-standard or custom-designed bit cells providing robust performance across varied operational scenarios. The CustomIP products are engineered for low dynamic power usage and high density, utilizing Spectral’s Memory Development Platform. Available in source code form, these solutions offer users the flexibility to modify designs, adapt them for new technologies, or extend capabilities—facilitating seamless integration within standard CMOS processes or more advanced SOI and embedded Flash processes. Spectral's proprietary SpectralTrak technology enhances CustomIP with precise environmental monitoring, ensuring operational integrity through real-time Process, Voltage, and Temperature adjustments. With options like advanced compiler features, multi-banked architectures, and standalone or compiler instances, Spectral CustomIP suits businesses striving to distinguish their IC offerings with unique, high-performance memory solutions.
TT-Ascalon™ stands out as a high-performance RISC-V CPU solution from Tenstorrent, tailored for general-purpose control and expansive computing tasks. This processor is distinguished by its scalable out-of-order architecture, which is co-designed and optimized with Tenstorrent's proprietary Tensix IP. The TT-Ascalon™ is engineered to deliver peak performance while maintaining the efficiency of area and power, crucial for modern computational demands. Built on the RISC-V RVA23 profile, TT-Ascalon™ provides a compelling combination of computational speed and energy efficiency, making it suitable for a wide range of applications from data centers to embedded systems. Its superscalar design facilitates the concurrent execution of multiple instructions, enhancing computing throughput and optimizing performance for demanding workloads. The processor’s architecture is further tailored to enable seamless integration into various systems. By complementing its high-efficiency design with comprehensive compatibility, TT-Ascalon™ ensures that users can implement sophisticated computing solutions that evolve with technological advancements and industry needs. This adaptability makes it an ideal choice for enterprises aiming to future-proof their technological infrastructure. Supporting a suite of developer tools and open-source initiatives, the TT-Ascalon™ allows users to freely innovate and tailor their computing solutions. This openness, combined with the processor’s unmatched performance, positions it as a vital component for those looking to maximize their computing efficiency and capabilities.
The SiFive Essential family provides a comprehensive range of embedded processor cores that can be tailored to various application needs. This series incorporates silicon-proven, pre-defined CPU cores with a focus on scalability and configurability, ranging from simple 32-bit MCUs to advanced 64-bit processors capable of running embedded RTOS and full-fledged operating systems like Linux. SiFive Essential empowers users with the flexibility to customize the design for specific performance, power, and area requirements. The Essential family introduces significant advancements in processing capabilities, allowing users to design processors that meet precise application needs. It features a rich set of options for interface customizations, providing seamless integration into broader SoC designs. Moreover, the family supports an 8-stage pipeline architecture and, in some configurations, offers dual-issue superscalar capabilities for enhanced processing throughput. For applications where security and traceability are crucial, the Essential family includes WorldGuard technology, which ensures comprehensive protection across the entire SoC, safeguarding against unauthorized access. The flexible design opens up various use cases, from IoT devices and microcontrollers to real-time control applications and beyond.
The NX Class RISC-V CPU IP by Nuclei is characterized by its 64-bit architecture, making it a robust choice for storage, AR/VR, and AI applications. This processing unit is designed to accommodate high data throughput and demanding computational tasks. By leveraging advanced capabilities, such as virtual memory and enhanced processing power, the NX Class facilitates cutting-edge technological applications and is adaptable for integration into a vast array of high-performance systems.
The SiFive Performance family is dedicated to offering high-throughput, low-power processor solutions, suitable for a wide array of applications from data centers to consumer devices. This family includes a range of 64-bit, out-of-order cores configured with options for vector computations, making it ideal for tasks that demand significant processing power alongside efficiency. Performance cores provide unmatched energy efficiency while accommodating a breadth of workload requirements. Their architecture supports up to six-wide out-of-order processing with tailored options that include multiple vector engines. These cores are designed for flexibility, enabling various implementations in consumer electronics, network storage solutions, and complex multimedia processing. The SiFive Performance family facilitates a mix of high performance and low power usage, allowing users to balance the computational needs with power consumption effectively. It stands as a testament to SiFive’s dedication to enabling flexible tech solutions by offering rigorous processing capabilities in compact, scalable packages.
A robust platform offering a full spectrum of ARM Cortex-M microprocessors, perfect for integration across a broad scope of systems. These ASICs are finely tuned to accommodate various applications, demonstrating commendable performance in areas such as IoT, industrial automation, and consumer electronics. Known for their reliability and scalability, these ASICs enhance system capabilities by providing customizable features that match exclusive client criteria.
The NI Class RISC-V CPU IP caters to communication, video processing, and AI applications, providing a balanced architecture for intensive data handling and processing capabilities. With a focus on high efficiency and flexibility, this processor supports advanced data crunching and networking applications, ensuring that systems run smoothly and efficiently even when managing complex algorithms. The NI Class upholds Nuclei's commitment to providing versatile solutions in the evolving tech landscape.
The Origin E1 is a streamlined neural processing unit designed specifically for always-on applications in personal electronics and smart devices such as smartphones and security systems. This processor focuses on delivering highly efficient AI performance, achieving around 18 TOPS per watt. With its low power requirements, the E1 is ideally suited for tasks demanding continuous data sampling, such as camera operations in smart surveillance systems where it runs on less than 20mW of power. Its packet-based architecture ensures efficient resource utilization, maintaining high performance with lower power and area consumption. The E1's adaptability is enhanced through customizable options, allowing it to meet specific PPA requirements effectively, making it the go-to choice for applications seeking to improve user privacy and experience by minimizing external memory use.
Join the world's most advanced semiconductor IP marketplace!
It's free, and you'll get all the tools you need to discover IP, meet vendors and manage your IP workflow!
No credit card or payment details required.
Join the world's most advanced AI-powered semiconductor IP marketplace!
It's free, and you'll get all the tools you need to advertise and discover semiconductor IP, keep up-to-date with the latest semiconductor news and more!
Plus we'll send you our free weekly report on the semiconductor industry and the latest IP launches!