Find IP Sell IP AI Assistant Chip Talk Chip Videos About Us
Log In

All IPs > Multimedia > VGA

VGA Semiconductor IPs for Multimedia Applications

The VGA (Video Graphics Array) category within our Multimedia section offers a diverse selection of semiconductor IPs that cater to a range of visual and graphical display applications. These IPs are crucial for designing systems that handle video signals and facilitate high-quality graphics rendering. Our VGA offerings are optimized for integration into various multimedia devices and ensure compatibility with existing infrastructures, making them ideal for applications that require dependable and efficient video display capabilities.

VGA semiconductor IPs are integral in developing video interfaces that connect graphics sources to monitors or displays. These IPs enable the conversion and transmission of video signals, maintaining the integrity and clarity of visual output. They are particularly useful in applications where traditional VGA connections are preferred, such as in industrial and commercial settings where legacy equipment must be supported alongside modern display technologies.

Incorporating VGA semiconductor IPs into your design ensures not only backward compatibility with older systems but also leverages the robustness of VGA standards for average display resolutions. This makes them particularly valuable in education and training environments, as well as in products designed for mass market settings where cost-effectiveness is a priority.

By choosing from our selection of VGA semiconductor IPs, developers and engineers can create multimedia products that prioritize reliability and performance. Whether you're working on developing video transmission systems, display adapters, or graphics cards, our IPs provide the necessary foundation to support a wide array of visual processing needs in today's dynamic technology landscape.

All semiconductor IP

KL730 AI SoC

The KL730 is a third-generation AI chip that integrates advanced reconfigurable NPU architecture, delivering up to 8 TOPS of computing power. This cutting-edge technology enhances computational efficiency across a range of applications, including CNN and transformer networks, while minimizing DDR bandwidth requirements. The KL730 also boasts enhanced video processing capabilities, supporting 4K 60FPS outputs. With expertise spanning over a decade in ISP technology, the KL730 stands out with its noise reduction, wide dynamic range, fisheye correction, and low-light imaging performance. It caters to markets like intelligent security, autonomous vehicles, video conferencing, and industrial camera systems, among others.

Kneron
TSMC
12nm
16 Categories
View Details

Chimera GPNPU

Chimera GPNPU is engineered to revolutionize AI/ML computational capabilities on single-core architectures. It efficiently handles matrix, vector, and scalar code, unifying AI inference and traditional C++ processing under one roof. By alleviating the need for partitioning AI workloads between different processors, it streamlines software development and drastically speeds up AI model adaptation and integration. Ideal for SoC designs, the Chimera GPNPU champions an architecture that is both versatile and powerful, handling complex parallel workloads with a single unified binary. This configuration not only boosts software developer productivity but also ensures an enduring flexibility capable of accommodating novel AI model architectures on the horizon. The architectural fabric of the Chimera GPNPU seamlessly blends the high matrix performance of NPUs with C++ programmability found in traditional processors. This core is delivered in a synthesizable RTL form, with scalability options ranging from a single-core to multi-cluster designs to meet various performance benchmarks. As a testament to its adaptability, the Chimera GPNPU can run any AI/ML graph from numerous high-demand application areas such as automotive, mobile, and home digital appliances. Developers seeking optimization in inference performance will find the Chimera GPNPU a pivotal tool in maintaining cutting-edge product offerings. With its focus on simplifying hardware design, optimizing power consumption, and enhancing programmer ease, this processor ensures a sustainable and efficient path for future AI/ML developments.

Quadric
TSMC
1000nm
17 Categories
View Details

Metis AIPU M.2 Accelerator Module

The Metis AIPU M.2 Accelerator Module by Axelera AI is a compact and powerful solution designed for AI inference at the edge. This module delivers remarkable performance, comparable to that of a PCIe card, all while fitting into the streamlined M.2 form factor. Ideal for demanding AI applications that require substantial computational power, the module enhances processing efficiency while minimizing power usage. With its robust infrastructure, it is geared toward integrating into applications that demand high throughput and low latency, making it a perfect fit for intelligent vision applications and real-time analytics. The AIPU, or Artificial Intelligence Processing Unit, at the core of this module provides industry-leading performance by offloading AI workloads from traditional CPU or GPU setups, allowing for dedicated AI computation that is faster and more energy-efficient. This not only boosts the capabilities of the host systems but also drastically reduces the overall energy consumption. The module supports a wide range of AI applications, from facial recognition and security systems to advanced industrial automation processes. By utilizing Axelera AI’s innovative software solutions, such as the Voyager SDK, the Metis AIPU M.2 Accelerator Module enables seamless integration and full utilization of AI models and applications. The SDK offers enhancements like compatibility with various industry tools and frameworks, thus ensuring a smooth deployment process and quick time-to-market for advanced AI systems. This product represents Axelera AI’s commitment to revolutionizing edge computing with streamlined, effective AI acceleration solutions.

Axelera AI
14 Categories
View Details

KL630 AI SoC

The KL630 is a pioneering AI chipset featuring Kneron's latest NPU architecture, which is the first to support Int4 precision and transformer networks. This cutting-edge design ensures exceptional compute efficiency with minimal energy consumption, making it ideal for a wide array of applications. With an ARM Cortex A5 CPU at its core, the KL630 excels in computation while maintaining low energy expenditure. This SOC is designed to handle both high and low light conditions optimally and is perfectly suited for use in diverse edge AI devices, from security systems to expansive city and automotive networks.

Kneron
TSMC
12nm LP/LP+
ADPCM, AI Processor, Camera Interface, CPU, GPU, Input/Output Controller, Processor Core Independent, USB, VGA, Vision Processor
View Details

aiSim 5

aiSim 5 stands as a cutting-edge simulation tool specifically crafted for the automotive sector, with a strong focus on validating ADAS and autonomous driving solutions. It distinguishes itself with an AI-powered digital twin creation capability, offering a meticulously optimized sensor simulation environment that guarantees reproducibility and determinism. The adaptable architecture of aiSim allows seamless integration with existing industry toolchains, significantly minimizing the need for costly real-world testing.\n\nOne of the key features of aiSim is its capability to simulate various challenging weather conditions, enhancing testing accuracy across diverse environments. This includes scenarios like snowstorms, heavy fog, and rain, with sensors simulated based on physics, offering changes in conditions in real-time. Its certification with ISO 26262 ASIL-D attests to its automotive-grade quality and reliability, providing a new standard for testing high-fidelity sensor data in varied operational design domains.\n\nThe flexibility of aiSim is further highlighted through its comprehensive SDKs and APIs, which facilitate smooth integration into various systems under test. Additionally, users can leverage its extensive 3D asset library to establish detailed, realistic testing environments. AI-based rendering technologies underpin aiSim's data simulation, achieving both high efficiency and accuracy, thereby enabling rapid and effective validation of advanced driver assistance and autonomous driving systems.

aiMotive
26 Categories
View Details

DisplayPort 1.4

The DisplayPort 1.4 core provides a comprehensive solution for DisplayPort requirements, implementing both source and sink capabilities. It supports link rates ranging from 1.62 Gbps to 8.1 Gbps, fitting standard DisplayPort and eDP scenarios efficiently. Users can take advantage of its support for multiple lanes, specifically 1, 2, and 4 lanes configurations, enabling versatile video interface options such as Native and AXI stream interfaces. This facilitates a strong multimedia performance, catering to both Single Stream Transport (SST) and Multi Stream Transport (MST) modes. The video processing toolkit accompanying this IP aims at aiding users in diverse video operations. These tools include a timing generator, a versatile test pattern generator, and crucial video clock recovery mechanisms. To simplify the integration into various systems, the IP is supported across a broad range of FPGA devices, including AMD and Intel lines, providing users with choice and flexibility for their specific application needs. Notably, it supports diverse video formats and color spaces, such as RGB, YCbCr 4:4:4, 4:2:2, and 4:2:0 at pixel depths of 8 and 10 bits. Secondary data packets handling audio and metadata enhance its multimedia capabilities. Furthermore, Parretto offers the source code on GitHub for ease of custom development, ensuring developers have the tools they need to adapt the IP to their unique systems.

Parretto B.V.
2D / 3D, AMBA AHB / APB/ AXI, Audio Interfaces, Cell / Packet, Ethernet, HDMI, Image Conversion, LCD Controller, MIL-STD-1553, MIPI, MPEG 4, Receiver/Transmitter, SATA, USB, V-by-One, VGA
View Details

DSC Decoder

The DSC Decoder by Trilinear Technologies delivers high-performance video compression capabilities for applications demanding real-time display stream processing. Encapsulated in robust silicon-proven IP, the decoder supports Display Stream Compression (DSC) standards, allowing for efficient compression and decompression of high-definition video streams. This ensures seamless video quality while optimizing the use of data transmission channels and saving bandwidth. A vital component of modern multimedia systems, the DSC Decoder is particularly valuable in industries where image quality and transmission efficiency are critical, such as in broadcasting, telecommunications, and advanced surveillance systems. By implementing industry-standard interfaces for configuration and operation, the decoder achieves smooth interoperability with a wide range of host systems and devices, simplifying its integration into existing digital infrastructures. Trilinear Technologies' DSC Decoder is optimized for low power consumption without sacrificing performance. This focus on energy efficiency makes it ideal for portable and battery-powered devices that demand prolonged operational times without frequent recharging. Its real-time decoding capability ensures that even high-definition streams up to 16K can be managed effectively, providing high-detail video output in a variety of formats and resolutions. The integration of the DSC Decoder is facilitated by detailed support documentation and software stacks that make it easier for developers to incorporate the IP into systems with varied architectural foundations. Whether deployed in consumer electronics or professional AV installations, this decoder ensures high-quality video output with reduced latency, meeting the demands of modern digital workflows and multimedia needs.

Trilinear Technologies
CSC, H.264, JPEG, TICO, VGA
View Details

RISCV SoC - Quad Core Server Class

The RISCV SoC - Quad Core Server Class is engineered for high-performance applications requiring robust processing capabilities. Designed around the RISC-V architecture, this SoC integrates four cores to offer substantial computing power. It's ideal for server-class operations, providing both performance efficiency and scalability. The RISCV architecture allows for open-source compatibility and flexible customization, making it an excellent choice for users who demand both power and adaptability. This SoC is engineered to handle demanding workloads efficiently, making it suitable for various server applications.

Dyumnin Semiconductors
28 Categories
View Details

BlueLynx Chiplet Interconnect

The BlueLynx Chiplet Interconnect system provides an advanced die-to-die connectivity solution designed to meet the demanding needs of diverse packaging configurations. This interconnect solution stands out for its compliance with recognized industry standards like UCIe and BoW, while offering unparalleled customization to fit specific applications and workloads. By enabling seamless connection to on-die buses and Networks-on-Chip (NoCs) through standards such as AMBA, AXI, ACE, and CHI, BlueLynx facilitates faster and cost-effective integration processes. The BlueLynx system is distinguished by its adaptive architecture that maximizes silicon utilization, ensuring high bandwidth along with low latency and power efficiency. Designed for scalability, the system supports a remarkable range of data rates from 2 to 40+ Gb/s, with an impressive bandwidth density of 15+ Tbps/mm. It also provides support for multiple serialization and deserialization ratios, ensuring flexibility for various packaging methods, from 2D to 3D applications. Compatible with numerous process nodes, including today’s most advanced nodes like 3nm and 4nm, BlueLynx offers a progressive pathway for chiplet designers aiming to streamline transitions from traditional SoCs to advanced chiplet architectures.

Blue Cheetah Analog Design, Inc.
GLOBALFOUNDRIES, TSMC
10nm, 20nm, 28nm, 65nm, 90nm, 90nm S90LN
AMBA AHB / APB/ AXI, Analog Front Ends, Clock Synthesizer, D2D, Gen-Z, IEEE1588, Interlaken, MIPI, Modulation/Demodulation, Network on Chip, PCI, PLL, Processor Core Independent, VESA, VGA
View Details

DSC Encoder

The DSC Encoder from Trilinear Technologies sets the standard for real-time video compression within digital display and broadcast technologies. Supporting VESA’s Display Stream Compression criteria, this encoder facilitates the efficient compression of high-definition video streams, which is critical for reducing bandwidth usage while maintaining video quality across transmission channels in advanced video systems. Trilinear’s encoder is ideal for numerous applications, ranging from consumer electronics to professional AV systems, where ensuring high-quality video output is paramount. Its robust functionality enables it to handle streams with precision and maintain visual integrity, making it essential for systems that require high-efficiency video compression such as gaming consoles, digital TV, and mobile devices. The DSC Encoder offers a high degree of configurability, providing developers with the flexibility to adapt it to various system requirements. It is equipped with industry-standard interfaces, allowing straightforward integration into existing infrastructure, ensuring compatibility and operational efficiency across different platforms. This versatility makes it well-suited for use in SoC designs and FPGA implementations, broadening its applicability across various technological landscapes. Featuring comprehensive software support and detailed user documentation, Trilinear’s DSC Encoder simplifies the integration process into complex systems, ensuring that developers can tap into its full range of capabilities with ease. Its real-time processing power and optimized energy consumption profile make it a reliable choice for cutting-edge digital video applications, reflecting Trilinear’s commitment to advancing multimedia technology.

Trilinear Technologies
CSC, H.264, JPEG, TICO, VGA
View Details

Hyperspectral Imaging System

The Hyperspectral Imaging System developed by Imec is designed to capture images across numerous wavelengths, enabling detailed analysis of spectral information beyond conventional imaging. This hyperspectral imaging technology is pivotal in extracting valuable insights in fields such as precision agriculture, environmental monitoring, and industrial inspection. With its versatile applications, it offers enhanced capabilities in material identification, chemical analysis, and quality control processes. This system incorporates state-of-the-art sensors that capture data with high spectral and spatial resolution, providing a comprehensive spectral fingerprint of the imaged scene. It excels in distinguishing subtle differences in material properties by analyzing the light reflected from different surfaces across various spectral bands. By using this advanced imaging system, users can perform complex analyses such as vegetation monitoring, pollution detection, and mineral mapping with unprecedented precision. It allows for non-destructive testing, which is crucial for industries like food safety, pharmaceutical production, and environmental science.

Imec
15 Categories
View Details

4K Video Scaler

The 4K Video Scaler from Zipcores is a high-quality RGB video scaler that is meticulously optimized for Ultra-High-Definition (UHD) 4K digital scaling applications. It is engineered to handle 2 pixels per clock cycle with an impressive effective pixel clock rate reaching up to 600 MHz. This capability makes it particularly suitable for mid-range FPGA and SoC devices. Its design is centered around simplicity, incorporating input/output interfaces that are fully compatible with AXI4-stream, eliminating the need for any frame buffer or external memory. This scaler stands out for delivering unparalleled video scaling efficiency, catering to the evolving demands of high-resolution graphics and video processing applications.

Zipcores
2D / 3D, AMBA AHB / APB/ AXI, Ethernet, Graphics & Video Modules, H.264, H.265, JPEG, MHL, Timer/Watchdog, VC-2 HQ, VGA
View Details

VDC-M Decoder

The VDC-M Decoder is designed to decode compressed video data, specifically adapted for modern digital display requirements. It focuses on translating compressed video streams into high-quality outputs suitable for current advanced digital video applications. This decoder is tailored to ensure that video fidelity is uncompromised during the decompression process, making it ideal for high-definition displays. This decoding solution is characterized by its robust ability to handle diverse video file formats, translating them seamlessly into usable display data. Its architecture supports a variety of ASIC and FPGA configurations, providing a versatile tool for developers working across multiple platforms. With minimal integration overhead, the VDC-M Decoder stands out as a practical choice for multimedia applications needing precise video decoding. The VDC-M Decoder supports modern video processing needs, ensuring that data integrity and timing are maintained throughout the decoding process. Its capability to smoothly adapt to different chip technologies underscores its design's flexibility and efficiency. As digital media consumption continues to evolve, the VDC-M Decoder remains a vital component for extracting the best visual quality from compressed video feeds.

Cybertek Solution Inc.
VGA
View Details

DSC Encoder

The DSC Encoder is a sophisticated tool designed for image compression, ensuring high-quality visuals without compromising on data integrity. This technology is especially advantageous for applications requiring efficient bandwidth usage, such as high-resolution displays and streaming services. By employing cutting-edge compression algorithms, the DSC Encoder reduces data size while maintaining visual fidelity, making it an essential component in modern multimedia systems. This encoder is engineered for seamless integration into various systems, providing flexibility in design and implementation. It supports a wide range of display resolutions and can be adapted to fit specific needs, whether for ASIC or FPGA deployments. Its robust performance in compressing video streams makes it a cornerstone in contemporary digital media environments, optimizing both storage and transmission efficiency. In addition to its core functionality, the DSC Encoder is designed with scalability in mind. It easily adapts to different processing nodes, ensuring compatibility across various semiconductor processes. This adaptability, coupled with its high-performance metrics, makes it an invaluable asset for designers aiming to incorporate top-tier video processing capabilities into their products.

Cybertek Solution Inc.
VGA
View Details

Alcora V-by-One HS Daughter Card

The Alcora V-by-One HS FMC Daughter Card is an advanced solution designed to integrate seamlessly with FPGA development boards for high-definition video transmission. Equipped with 8 RX lanes and 8 TX lanes, this card efficiently supports video resolutions up to 4K at 120Hz and 8K at 30Hz by using two cards in tandem for a total of 16 lanes. Designed with versatility in mind, it comes in both 41-pin and 51-pin header variants to accommodate different project setups. Key features include two clock generators that function to refine transceiver reference clocks and minimize jitter during RX clock recovery, maintaining clarity and precision in signal transmission. Known for the high-speed interface technology engineered by THine Electronics, the V-by-One HS interface on this card ensures an optimal balance of speed and clarity in data transmission, making it a prime choice for applications within the flat panel display sector. The Alcora card exemplifies Parretto’s dedication to producing high-performance, adaptable hardware solutions that drive innovation in video display technology.

Parretto B.V.
AMBA AHB / APB/ AXI, Analog Filter, ATM / Utopia, Audio Interfaces, Cryptography Cores, Cryptography Software Library, LCD Controller, V-by-One, VESA, VGA
View Details

Serial Front Panel Data Port (sFPDP) IP Core

The Serial Front Panel Data Port (sFPDP) IP Core delivers a complete hardware implementation meeting the ANSI/VITA 17.1-2015 standard specification. It supports full-bandwidth operation through an easily integrable frame interface that simplifies system design and integration. By ensuring low-latency data transfers, this core is ideal for applications requiring reliable high-speed communication. Engineered for enhanced performance, this IP core excels in strategically facilitating direct communication links between data sources and sinks within network systems. Its comprehensive support for data integrity and timing enhances its value in environments necessitating precise high-speed data exchanges, making it pivotal for both aerospace and military communication infrastructures.

New Wave Design
DMA Controller, RapidIO, VGA
View Details

Video Wall Display Management System

Korusys' Video Wall Display Management System is a sophisticated solution for managing multiple video outputs from a single source. Designed to support digital signage and public information displays, it processes HDMI or Display Port video inputs and synchronizes their display across up to four monitors. The system is customizable and scalable, allowing for various configurations like cloning or spanning inputs across multiple outputs. This flexibility, combined with bezel compensation and EDID parsing, ensures flawless display arrangement and resolution support, making it ideal for both large-scale and small-scale video wall applications.

Korusys Ltd
2D / 3D, AMBA AHB / APB/ AXI, Clock Generator, CRT Controller, GPU, Graphics & Video Modules, HDMI, Keyboard Controller, LCD Controller, V-by-One, VGA
View Details

Network-on-Chip-based SoC Integration

The intricacies of building a robust SoC lie in having a well-integrated network-on-chip framework. Marquee Semiconductor stands out in developing both coherent and non-coherent NoC-based subsystems and platforms. By integrating various components, these implementations create scalable chiplets that optimize and enhance the performance of complex systems. This setup enables efficient handling of increasing data and device interconnections, ensuring seamless integration within modern SoCs.

Marquee Semiconductor Inc.
AMBA AHB / APB/ AXI, CAN-FD, Multiprocessor / DSP, Network on Chip, VGA
View Details

DSC Decoder

The DSC Decoder is integral for decompressing media files that have been compressed using a DSC Encoder, restoring the compressed data back to its original high-quality format. It's designed to work seamlessly with high-resolution displays, ensuring that every detail is rendered with clarity and precision. This technology is crucial for applications like digital television and high-definition multimedia interfaces. Built to handle intensive data processes, the DSC Decoder supports a wide variety of resolutions and color depths. It can easily integrate with existing systems, offering a versatile solution for many digital media applications. Whether deploying on ASIC or FPGA platforms, the Decoder's efficient architecture ensures minimal latency and optimal performance during video playback. The DSC Decoder's design prioritizes compatibility and ease of use, making it suitable for a broad range of platforms and display technologies. Its ability to maintain signal integrity while decompressing data rapidly is critical for applications where timing and quality are paramount. As such, the DSC Decoder is a pivotal technology for developers seeking to maintain high display standards across various devices.

Cybertek Solution Inc.
VGA
View Details

SlimPort DisplayPort to MIPI-DSI Controllers

This product serves as a bridge for high-definition audio and video signals, converting them from DisplayPort to MIPI-DSI interfaces. It is ideally suited for integrating into the next generation of mobile devices and VR headsets, requiring efficient and low-latency signal processing. The integration enables these devices to deliver ultra-clear, crisp visuals coupled with high-quality sound, essential for immersive experiences. The converter's ability to handle multiple lanes of data transmission ensures that all connected devices can maintain high performance without compromising quality. It supports a variety of screen resolutions, making it highly versatile for cutting-edge display technologies. This flexibility solidifies its position as a vital component in high-end consumer electronics and mobile hardware. Moreover, the efficiency of this conversion technology translates into longer battery life for portable devices. By optimizing the power usage during signal conversion, it contributes to the device's overall energy efficiency, providing users with extended use without frequent recharging.

Analogix Semiconductor, Inc.
2D / 3D, ADPCM, Analog Front Ends, Audio Interfaces, HDMI, JPEG, MHL, MIPI, PLL, VGA
View Details

MIPI D-PHY Analog Transceiver

The MIPI D-PHY Analog Transceiver from Arasan is designed to deliver efficient signal transmission for mobile and imaging devices. It adheres to MIPI standards, providing a critical communication bridge for high-bandwidth data transmissions in mobile electronics. This transceiver integrates advanced power management features to optimize energy consumption, supporting high-speed modes and operating with minimal electrical interference. Its robust design ensures stable performance across varied electronic environments, ensuring reliability in high-demand scenarios such as imaging and display devices.

Arasan Chip Systems, Inc.
Clock Synthesizer, LCD Controller, MIPI, Multi-Protocol PHY, PLL, USB, VGA
View Details

Video DAC

This Video DAC specializes in converting digital video signals into analog outputs, suitable for video display technologies. With its high-resolution support and precision, it ensures video quality is maintained across different formats, making it essential for seamless video output in entertainment and professional graphics systems.

Sunplus Technology Co., Ltd.
D/A Converter, H.264, JPEG, QOI, VGA
View Details

MIPS Sense Data Movement Engines

MIPS Sense products focus on advancing autonomous platforms by enabling rapid data movement and processing capabilities. These engines are notably crafted for processing data from diverse sensors, seamlessly integrating and processing this information in real-time. This functionality is critical for platforms that require instantaneous decision-making, such as industrial robotics and automotive applications where sensor fusion dictates operational dynamics. The Sense Data Movement Engines are engineered to manage multiple data streams simultaneously, ensuring that even under demanding conditions, the data processed is reliable and reflective of the real-time environment. This ensures high performance through low-latency operations, significantly enhancing computational efficiency and response accuracy across complex scenarios. Specifically designed with scalable application processors, the Sense engines help in executing detailed control processes and interfacing with hardware accelerators for efficient data handling. By facilitating robust data fusion, these engines contribute to smarter automated operations, paving the way for advancements in autonomous tech and data-driven operations across various sectors.

MIPS
14 Categories
View Details

Camera Link Interface

The Camera Link Interface offered by Zipcores complements the needs of video interface solutions with compatibility across BASE, MEDIUM, and FULL configurations. It features full support for both the camera link receiver (frame-grabber) and transmitter (camera) interfaces, aligning with the original standards set by National Semiconductor. This interface ensures seamless operation and direct compatibility for professionals looking to integrate video communications into their projects. This versatility enhances its appeal for numerous applications, particularly in high-end imaging systems requiring robust and high-speed data transmission capabilities. Ideal for professionals handling sophisticated video setups, it promises reliability and outstanding performance across varied operational scenarios.

Zipcores
Camera Interface, Interlaken, VGA
View Details
Sign up to Silicon Hub to buy and sell semiconductor IP

Sign Up for Silicon Hub

Join the world's most advanced semiconductor IP marketplace!

It's free, and you'll get all the tools you need to discover IP, meet vendors and manage your IP workflow!

No credit card or payment details required.

Sign up to Silicon Hub to buy and sell semiconductor IP

Welcome to Silicon Hub

Join the world's most advanced AI-powered semiconductor IP marketplace!

It's free, and you'll get all the tools you need to advertise and discover semiconductor IP, keep up-to-date with the latest semiconductor news and more!

Plus we'll send you our free weekly report on the semiconductor industry and the latest IP launches!

Switch to a Silicon Hub buyer account to buy semiconductor IP

Switch to a Buyer Account

To evaluate IP you need to be logged into a buyer profile. Select a profile below, or create a new buyer profile for your company.

Add new company

Switch to a Silicon Hub buyer account to buy semiconductor IP

Create a Buyer Account

To evaluate IP you need to be logged into a buyer profile. It's free to create a buyer profile for your company.

Chatting with Volt