All IPs > Multimedia > Camera Interface
The camera interface semiconductor IP category within the Silicon Hub catalog offers a wide range of advanced solutions tailored to streamline the integration of camera systems into multimedia devices. These semiconductor IPs are crucial for enhancing image capture and processing capabilities in various applications, from consumer electronics to automotive systems. As the demand for high-quality imaging in devices such as smartphones, tablets, drones, and in-vehicle infotainment systems continues to rise, robust and efficient camera interface IPs have become essential components in the semiconductor ecosystem.
Camera interface semiconductor IPs are designed to manage the complex interaction between image sensors and digital processing units found in modern electronic devices. These IPs support a variety of camera interface standards such as MIPI CSI-2, parallel interfaces, and LVDS, providing flexible integration options for different sensor types and processing architectures. They help in optimizing power consumption, reducing latency, and ensuring high data throughput, enabling smooth and responsive multimedia experiences for end users.
In addition to technical efficiency, camera interface semiconductor IPs also play a pivotal role in reducing development timelines and costs. By providing pre-designed and verified modules, these IPs significantly cut down on the engineering resources required to develop and validate complex camera systems from scratch. This acceleration of product development cycles allows companies to bring innovative devices to market faster, maintaining competitive advantage in the fast-paced consumer electronics and automotive markets.
Furthermore, camera interface semiconductor IPs contribute to the scalability and future-readiness of multimedia devices. As emerging technologies and higher resolutions continue to push the boundaries of image capture and processing, having a modular and adaptable IP solution enables manufacturers to upgrade or modify their camera capabilities without complete system overhauls. This flexibility is especially beneficial in automotive applications, where advanced driver-assistance systems (ADAS) and autonomous vehicle technologies are advancing rapidly, necessitating reliable and high-performance camera interfaces.
Overview: Lens distortion is a common issue in cameras, especially with wide-angle or fisheye lenses, causing straight lines to appear curved. Radial distortion, where the image is expanded or reduced radially from the center, is the most prominent type. Failure to correct distortion can lead to issues in digital image analysis. The solution involves mathematically modeling and correcting distortion by estimating parameters that determine the degree of distortion and applying inverse transformations. Automotive systems often require additional image processing features, such as de-warping, for front/rear view cameras. The Lens Distortion Correction H/W IP comprises 3 blocks for coordinate generation, data caching, and interpolation, providing de-warping capabilities for accurate image correction. Specifications: Maximum Resolution: o Image: 8MP (3840x2160) o Video: 8MP @ 60fps Input Formats: YUV422 - 8 bits Output Formats: o AXI: YUV420, YUV422, RGB888 - 8 bits Interface: o ARM® AMBA APB BUS interface for system control o ARM® AMBA AXI interface for data Features: Programmable Window Size and Position Barrel Distortion Correction Support Wide Angle Correction up to 192° De-warping Modes: o Zoom o Tilt o Pan o Rotate o Side-view Programmable Parameters: o Zoom Factor: controls Distance from the Image Plane to the Camera (Sensor)
The KL730 AI SoC is a state-of-the-art chip incorporating Kneron's third-generation reconfigurable NPU architecture, delivering unmatched computational power with capabilities reaching up to 8 TOPS. This chip's architecture is optimized for the latest CNN network models and performs exceptionally well in transformer-based applications, reducing DDR bandwidth requirements substantially. Furthermore, it supports advanced video processing functions, capable of handling 4K 60FPS outputs with superior image handling features like noise reduction and wide dynamic range support. Applications can range from intelligent security systems to autonomous vehicles and commercial robotics.
Overview: RCCC and RCCB in ISP refer to Red and Blue Color Correction Coefficients, respectively. These coefficients are utilized in Image Signal Processing to enhance red and blue color components for accurate color reproduction and balance. They are essential for color correction and calibration to ensure optimal image quality and color accuracy in photography, video recording, and visual displays. The IP is designed to process RCCC pattern data from sensors, where green and blue pixels are substituted by Clear pixel, resulting in Red or Clear (Monochrome) format after demosaicing. It supports real-time processing with Digital Video Port (DVP) format similar to CIS output. RCCB sensors use Clear pixels instead of Green pixels, enhancing sensitivity and image quality in low-light conditions compared to traditional RGB Bayer sensors. LOTUS converts input from RCCB sensors to a pattern resembling RGB Bayer sensors, providing DVP format interface for real-time processing. Features: Maximum Resolution: 8MP (3840h x 2160v) Maximum Input Frame Rate: 30fps Low Power Consumption RCCC/RCCB Pattern demosaicing
Overview: Human eyes have a wider dynamic range than CMOS image sensors (CIS), leading to differences in how objects are perceived in images or videos. To address this, CIS and IP algorithms have been developed to express a higher range of brightness. High Dynamic Range (HDR) based on Single Exposure has limitations in recreating the Saturation Region, prompting the development of Wide Dynamic Range (WDR) using Multi Exposure images. The IP supports PWL companding mode or Linear mode to perform WDR. It analyzes the full-image histogram for global tone mapping and maximizes visible contrast in local areas for enhanced dynamic range. Specifications: Maximum Resolution: o Image: 13MP o Video: 13MP @ 60fps (Input/Output) Input Formats (Bayer): o HDR Linear Mode: Max raw 28 bits o Companding Mode: Max PWL compressed raw 24 bits Output Formats (Bayer): 14 bits Interface: o ARM® AMBA APB BUS interface for ISP system control o ARM® AMBA AXI interface for data o Video data stream interface Features: Global Tone Mapping based on histogram analysis o Adaptive global tone mapping per Input Images Local Tone Mapping for adaptive contrast enhancement Real-Time WDR Output Low Power Consumption and Small Gate Count 28-bit Sensor Data Interface
Overview: RGB-IR features in ISP enable the capture and processing of Red, Green, Blue, and Infrared (IR) light data in an Image Signal Processing (ISP) system. This functionality enhances image quality by extracting additional information not visible to the human eye in standard RGB images. By integrating IR and RGB data into the demosaic processing pipeline, the ISP can enhance scene analysis, object detection, and image clarity in applications such as surveillance, automotive, and security systems. Features: IR Core - 4Kx1EA: 4K Maximum Resolution: 3840h x 2160v @ 30fps IR Color Correction 3.99x support IR data Full-size output / 1/4x subsample support (Pure IR Pixel data) Only RGB-IR 4x4 pattern support IR data Crop support
As the SoC that placed Kneron on the map, the KL520 AI SoC continues to enable sophisticated edge AI processing. It integrates dual ARM Cortex M4 CPUs, ideally serving as an AI co-processor for products like smart home systems and electronic devices. It supports an array of 3D sensor technologies including structured light and time-of-flight cameras, which broadens its application in devices striving for autonomous functionalities. Particularly noteworthy is its ability to maximize power savings, making it feasible to power some devices on low-voltage battery setups for extended operational periods. This combination of size and power efficiency has seen the chip integrated into numerous consumer product lines.
The KL630 AI SoC represents Kneron's sophisticated approach to AI processing, boasting an architecture that accommodates Int4 precision and transformers, making it incredibly adept in delivering performance efficiency alongside energy conservation. This chip shines in contexts demanding high computational intensity such as city surveillance and autonomous operation. It sports an ARM Cortex A5 CPU and a specialized NPU with 1 eTOPS computational power at Int4 precision. Suitable for running diverse AI applications, the KL630 is optimized for seamless operation in edge AI devices, providing comprehensive support for industry-standard AI frameworks and displaying superior image processing capabilities.
The ARINC 818 Streaming IP Core is engineered to deliver real-time streaming conversion between a pixel data bus and an ARINC 818 formatted Fibre Channel (FC) serial data stream, or vice versa. This core is pivotal in applications where precision and timing are critical, providing efficient data handling for high-resolution display systems commonly used in avionics. Tailored for flexibility, this IP core supports bidirectional conversion, which provides seamless integration into existing infrastructure, enhancing both legacy systems and new installations. By handling ARINC 818 formatted FC data, it ensures consistent and accurate data synchronization, making it ideal for mission-critical aerospace applications. This IP core excels in environments requiring advanced data processing and synchronization. Its design minimizes latency while maximizing throughput, ensuring high-quality transmission and reception of visual data. The ARINC 818 Streaming IP Core is a vital asset in enhancing the performance and reliability of communication and display systems in complex aerospace technologies.
The ARINC 818 Direct Memory Access (DMA) IP Core is specifically designed to optimize data transaction processes within ARINC 818 protocols, particularly emphasizing receipt and transmission efficiency. This core is an essential component for embedded applications where offloading of formatting, timing, and buffer management is crucial for operational success. Ideal for avionics applications, the core simplifies integration by efficiently managing data transfer operations between system nodes through coordinated DMA mechanisms. It provides a streamlined hardware solution, reducing the overhead typically associated with direct memory operations and improving the overall system performance. Built with scalability in mind, the ARINC 818 DMA IP Core supports various data rates and configurations, enhancing its adaptability to different system architectures. By minimizing CPU intervention in data handling, it increases processing efficiency, further ensuring high-speed data handling with minimal delay or disruption.
ActLight has tailored its Dynamic PhotoDetector (DPD) technology for smartphone applications to meet the growing demand for high-performance sensors. This sensor promises to elevate the smartphone experience with cutting-edge proximity and ambient light sensing capabilities. Utilizing a 3D Time-of-Flight (ToF) approach, it enables precise detection and response to varying lighting conditions, significantly enhancing the functionality of smart devices. The DPD technology operates on a low-voltage platform, which reduces both power consumption and thermal output, making it an ideal solution for managing battery-intensive tasks. Its ability to detect even the smallest light changes allows for finely tuned screen adaptations, improving the user interface and device efficiency. By providing advanced light sensitivity and low-energy operation, ActLight's DPD enhances mobile devices' overall utility and performance. This allows for sharper imaging, more immersive applications, and more precise environmental sensing, crafting a superior and user-friendly smartphone experience. Its integration into smartphones paves the way for more efficient and innovative mobile technologies.
ActLight has tailored its Dynamic PhotoDetector (DPD) technology for smartphone applications to meet the growing demand for high-performance sensors. This sensor promises to elevate the smartphone experience with cutting-edge proximity and ambient light sensing capabilities. Utilizing a 3D Time-of-Flight (ToF) approach, it enables precise detection and response to varying lighting conditions, significantly enhancing the functionality of smart devices. The DPD technology operates on a low-voltage platform, which reduces both power consumption and thermal output, making it an ideal solution for managing battery-intensive tasks. Its ability to detect even the smallest light changes allows for finely tuned screen adaptations, improving the user interface and device efficiency. By providing advanced light sensitivity and low-energy operation, ActLight's DPD enhances mobile devices' overall utility and performance. This allows for sharper imaging, more immersive applications, and more precise environmental sensing, crafting a superior and user-friendly smartphone experience. Its integration into smartphones paves the way for more efficient and innovative mobile technologies.
Emphasizing energy efficiency and processing power, the KL530 AI SoC is equipped with a newly developed NPU architecture, making it one of the first chips to adopt Int4 precision commercially. It offers remarkable computing capacity with lower energy consumption compared to its predecessors, making it ideal for IoT and AIoT scenarios. Embedded with an ARM Cortex M4 CPU, this chip enhances comprehensive image processing performance and multimedia codec efficiency. Its ISP capabilities leverage AI-based enhancements for superior image quality while maintaining low power usage during operation, thereby extending its competitiveness in fields such as robotics and smart appliances.
The DVB-S2-LDPC-BCH module by Wasiela integrates cutting-edge forward error correction capabilities with high efficiency. This product leverages the power of Low-Density Parity-Check codes concatenated with Bose-Chaudhuri-Hocquenghem (BCH) codes, ensuring reliable operation near the theoretical limits of data transmission. Designed for satellite communications, the DVB-S2-LDPC-BCH decoder supports an irregular parity check matrix and employs layered decoding techniques. The inclusion of the minimum sum algorithm enhances precision and performance through soft decision decoding. It is fully compliant with ETSI standards, making it a secure choice for satellite broadcast applications. The module offers a variety of throughput and error correction configurations, facilitated by a comprehensive delivery package, including synthesizable Verilog, test benches, and extensive documentation. This intellectual property core proves itself indispensable for modern digital video broadcasting needs, offering both power and adaptability.
Brite Semiconductor's YouMIPI offers a complete set of solutions for MIPI interfaces, particularly focusing on the CSI and DSI standards. The solution is adept at handling data from a sensor to the image processing parts of a system, converting byte streams into pixel data while mitigating electromagnetic interference through configurable data scrambling. Featuring compliance with multiple versions of the MIPI standards, YouMIPI supports substantial data rates across several lanes in C-PHY and D-PHY configurations, allowing for flexible integration with a wide range of application processors. The architecture provides efficient multi-channel distribution and manages synchronization effortlessly, addressing both high-speed and low-power operational modes as specified by MIPI. YouMIPI is particularly designed for use in camera modules and display interfaces in mobile devices, automotive solutions, and consumer electronics. The robust design underpinning YouMIPI ensures optimal data handling and high-quality signal processing for superior image and display performance.
The WDR Core provides an advanced approach to wide dynamic range imaging by controlling image tone curves automatically based on scene analysis. This core is adept at ensuring that both shadows and highlights are appropriately compensated, thus maintaining image contrast and true color fidelity without the reliance on frame memory. Automatic adjustments extend the dynamic range of captured images, providing detailed correction in overexposed and underexposed areas. This capability is vital for environments with variable lighting conditions where traditional gamma corrections might introduce inaccuracies or unnatural visual effects. The core focuses on enhancing the user experience by delivering detailed and balanced images across diverse scenarios. Its versatility is particularly useful in applications like surveillance, where clarity across a range of light levels is critical, and in consumer electronics that require high-quality imaging in varying illumination.
The IP Camera Front End from Bitec is an advanced, fully parameterised CMOS sensor front end core, optimized for Altera FPGA platforms. It provides a robust solution for integrating high-quality, real-time visual data capture and processing into smart security cameras, surveillance systems, and other camera-based applications. Engineered to support various CMOS sensors, this IP core enables developers to construct customized imaging solutions that meet specific application demands, ensuring high resolution and frame rate without compromising image clarity and detail. Its architectural efficiency enhances the capture and processing of video data, facilitating accelerated image pipeline processing required for demanding tasks. With the integration of this Bitec IP Core, developers can achieve optimized synchronization and data conversion processes, maintaining the high fidelity of captured video. It is a crucial component for applications requiring rapid prototyping and deployment, offering complete flexibility in design configurations. Moreover, the IP Camera Front End core aligns with Altera's SoPC (System-on-Programmable-Chip) nomenclature, allowing easy integration into broader systems requiring DSP (Digital Signal Processing) capabilities. This makes it a versatile choice for engineers looking to implement sophisticated video technology systems efficiently.
The ATSC 8-VSB Modulator offers a comprehensive solution tailored to meet the demands of digital terrestrial television broadcasting, adhering to the ATSC A/53 standard for 8-VSB. This core is ideal for both professional TV networks and custom point-to-point radio links, facilitating a wide range of broadcasting applications with high fidelity and performance. Developed to ensure compliance with current digital television broadcast standards, this modulator supports a variety of operational environments, contributing to efficient spectrum usage and robust signal delivery. Broadcasters benefit from its ability to deliver reliable, high-quality video and audio content across a broad geographic distribution. It integrates sophisticated modulation and error correction techniques, ensuring optimal operation in diverse network conditions. This makes it vital for operators seeking to heighten service delivery while aligning with digital broadcast standards, providing a trusted and flexible solution for terrestrial television deployment.
StreamDSP's complete MIPI video processing pipeline offers a comprehensive solution to simplify video integration into embedded FPGA systems. This pipeline supports both Avalon and AXI-4 streaming protocols, accommodating a vast array of sensor video formats and customizable frame rates, including 4K at 60 frames per second and beyond. The flexible architecture facilitates low-latency video processing with the capacity to handle multiple pixels per clock cycle. This enables users to make resource and clock rate trade-off decisions more effectively. The pipeline components can be seamlessly integrated into various system configurations, providing full IP integration and customization services to ensure that each design is optimized for its specific application. The solution simplifies the process of embedding complex video capabilities into FPGAs, making it well-suited for high-performance video applications across different sectors.
The DVB-T2 Modulator represents a cutting-edge solution tailored for the second generation of terrestrial digital video broadcasting. Designed for use in professional TV networks as well as custom point-to-point radio link applications, this modulator adheres to the DVB-T2 standard ETSI EN302 755. This piece of equipment is engineered to deliver all necessary functions for DVB-T2 modulation, providing broadcasters with the adaptability to harness enhanced transmission effectiveness and service offerings. With its efficient implementation, the modulator supports advanced transmission schemes necessary for higher-resolution broadcasts and innovative services. Its robust construction allows for seamless operation within a variety of hardware configurations, ensuring compliance with newer broadcast standards. This ensures broadcasters and network operators can deliver higher throughput with better signal integrity across multiple services, supporting both professional and consumer-grade applications.
The logiREF-ACAP-MULTICAM-ISP HDR ISP Framework is designed for multi-camera applications requiring high definition real-time processing using the Versal ACAP platform. This complete HDR ISP video processing framework is capable of handling parallel streams from three UHD automotive video cameras. Xylon has optimized this solution for environments demanding robust image processing, with a focus on enhancing image quality in various lighting conditions—an essential capability for automotive and surveillance applications. The design framework integrates seamlessly with existing systems, utilizing the framework's capabilities to enhance image signal processing pipelines. This innovative framework serves as a powerful tool for developers aiming to harness the latest in image processing technologies, ensuring rapid deployment and optimized performance for high-bandwidth video streams.
The Advanced Video Transmission Toolkit (FV-VTT) from FastVDO is a cutting-edge solution designed to simulate video encoding, forward error correction (FEC), transmission channels, and video quality assessment. This toolkit supports popular video standards like H.264, H.265, H.266, and AV1, along with advanced FECs such as Polar, LDPC, and Turbo codes used in Wifi and 5G standards. Incorporating diverse channel models like AWGN, Rayleigh fading, and burst error channels, FV-VTT is a comprehensive package for video transmission analysis. By accurately simulating varying conditions and assessing received video quality, this toolkit aids in the development of robust video transmission systems capable of maintaining fidelity across different environments. FastVDO's toolkit is instrumental for developers and researchers focused on optimizing video communication technologies, offering insights to improve video delivery and quality in real-world applications. This innovative product embodies FastVDO's commitment to advancing multimedia communication standards, providing powerful tools for video engineers.
Designed for environments where multiple channels need simultaneous processing, the Multi-channel ATSC 8-VSB Modulator aligns with the ATSC A/53 8-VSB standard. It is apt for professional networks or custom usage in point-to-point radio links, offering comprehensive quality and efficiency across diverse broadcasting needs. This modulator is crucial for broadcasters aiming to expand their service offerings across spectrum-limited environments. It handles various modulation and error correction schemes, enabling the effective and reliable transmission of high-quality video and audio content across multi-channel setups. Offering a stable and reliable solution, this modulator supports extensive applications in TV broadcasting by ensuring compliance with digital terrestrial broadcast requirements. It is invaluable for operators focused on maximizing transmitter capabilities and optimizing the broadcasting spectrum, making it an ideal solution for high-demand broadcasting services.
The Camera PHY Interface for Advanced Processes is an essential component designed to ensure seamless communication between digital cameras and their downstream electronics. This interface controls the exchange of high-speed data between camera sensors and processors, thereby enhancing clarity and reducing latency in image processing. One of the standout features is its support for advanced processing techniques, making it compatible with future-forward camera module architectures.\n\nThis interface IP is engineered to support various data exchange protocols such as sub-LVDS and MIPI D-PHY, which are widely used in contemporary high-definition cameras. This support ensures not just compatibility but also optimizes the data throughput necessary for capturing high-resolution images and video. Furthermore, the modular design of this interface allows it to be easily adaptable to different sensor types and configurations, effectively broadening its scope of application beyond typical consumer electronics.\n\nBy incorporating such a functionally rich interface, manufacturers can achieve unprecedented levels of performance in image capture technology. It also aids in minimizing power consumption and maximizing data integrity, which are crucial for prolonged and effective usage. Ideal for use in a diverse range of consumer electronics from smartphones to professional-grade cameras, this IP stands out as a reliable solution for high-performance image processing applications.
The ISDB-T Modulator is designed for International Standard Digital Broadcast-Terrestrial television, compatible with ARIB STD-B31 and ABNT NBR 15601 standards. It is particularly suitable for implementation in professional television networks and bespoke point-to-point radio links, supporting a wide array of broadcasting needs. This modulator core facilitates high-quality and versatile broadcasting solutions by accommodating various code rates and transmission parameters. It is engineered to deliver outstanding reliability and efficiency, making it an essential asset for television service providers focused on delivering superior visual and audio content. With built-in support for ISDB-T specific functions, broadcasters can leverage advancements in digital terrestrial broadcast technology to enhance content and service delivery. This modulator offers a robust framework for expanding service capabilities within existing infrastructures, optimizing bandwidth usage while maintaining broadcast quality.
TicoRAW FPGA/ASIC IP Cores are at the forefront of RAW image compression, offering exceptional efficiency for handling high-resolution image and video data. Ideal for use with next-generation image sensors, these IP cores maximize image quality while minimizing the bandwidth required for data transmission and storage. The distinctive feature of TicoRAW is its ability to maintain the highest levels of detail and color integrity across the luminance and chrominance spectrum, making it perfectly suited for high-dynamic-range imaging and high frame rate environments. This performance is critical in industries such as digital cinema, broadcasting, and surveillance, where preserving RAW data quality is paramount. Additionally, TicoRAW enables real-time processing with low power consumption, making it an excellent choice for portable and embedded applications. It supports a wide range of resolutions and frame rates, up to 200 megapixels, ensuring compatibility with various modern imaging devices. The ability to integrate seamlessly into existing workflows makes it a staple for professionals looking to advance their imaging capabilities significantly.
ADiiS specializes in the design and development of integrated imaging systems for aeronautical applications. With over 15 years collaborating with the aerospace industry's leading names, ADiiS has crafted a range of video solutions suited for high-altitude photography, including helicopter and fighter jet systems. Their cameras and multi-channel recorders adhere to stringent operational standards and continue to innovate with ITAR-free designs, maintaining compatibility with standards like DO160 and MIL810.
Join the world's most advanced semiconductor IP marketplace!
It's free, and you'll get all the tools you need to discover IP, meet vendors and manage your IP workflow!