All IPs > Memory & Logic Library > Embedded Memories
Embedded memories play a crucial role in the architecture of modern electronic devices, offering storage and retrieval capabilities that are integral to processor function and data management. In Silicon Hub's Memory & Logic Library, the Embedded Memories category encompasses a wide variety of semiconductor IPs designed to meet these needs in diverse applications, from consumer electronics to industrial systems.
The primary function of embedded memories is to store and manage data internally within a device, which is essential for efficient processing and quick data access. These semiconductor IPs are typically integrated within a system on chip (SoC) to optimize performance and minimize latency compared to off-chip memory solutions. This integration helps improve overall device performance, reduce power consumption, and enhance the speed of data processing.
Common types of embedded memories available in this category include SRAM (Static Random Access Memory), DRAM (Dynamic Random Access Memory), MRAM (Magnetic Random Access Memory), and non-volatile memory types like Flash and EEPROM. Each type offers distinct advantages, such as high speed in SRAM, lower power consumption in DRAM, or the ability to retain data without power in non-volatile memories. These memory IPs are utilized in a plethora of products from smartphones and tablets to automotive systems and IoT devices, where compact, reliable, and efficient memory solutions are paramount.
Developers seeking to enhance computational efficiency and data handling capabilities in their designs will find this category indispensable. By choosing the right embedded memory IP from our Memory & Logic Library, manufacturers can create products that meet the demanding requirements of modern applications, ensuring reliability and excellent performance in a competitive market.
The NVMe Host Controller from iWave Global offers an advanced solution for managing NVMe drive interfaces in computing systems. This controller is designed to facilitate the high-speed data exchange that NVMe drives demand, streamlining operations across data-centric applications. Engineered for scalability and performance, the NVMe Host Controller supports high data throughput, ensuring quick access and transfer of data between storage devices and host systems. Its design caters to the demands of modern computational environments where rapid data retrieval and storage are critical. The controller is integral in systems requiring high-performance storage solutions, and its support for multiple interfaces underscores its adaptability and broad applicability in data-intensive industries such as enterprise storage and high-performance computing.
CrossBar's ReRAM Memory brings a revolutionary shift in the non-volatile memory sector, designed with a straightforward yet efficient three-layer structure. Comprising a top electrode, a switching medium, and a bottom electrode, ReRAM holds vast potential as a multiple-time programmable memory solution. Leveraging the resistive switching mechanism, the technology excels in meter-scale data storage applications, integrating seamlessly into AI-driven, IoT, and secure computing realities. The patented ReRAM technology is distinguished by its ability to perform at peak efficiency with notable read and write speeds, making it a suitable candidate for future-facing chip architectures that require swift, wide-ranging memory capabilities. Unprecedented in its energy-saving capabilities, CrossBar's ReRAM slashes energy consumption by up to 5 times compared to eFlash and offers substantial improvements over NAND and SPI Flash memories. Coupled with exceptional read latencies of around 20 nanoseconds and write times of approximately 12 microseconds, the memory technology outperforms existing solutions, enhancing system responsiveness and user experiences. Its high-density memory configurations provide terabyte-scale storage with minimal physical footprint, ensuring effective integration into cutting-edge devices and systems. Moreover, ReRAM's design permits its use within traditional CMOS manufacturing processes, enabling scalable, stackable arrays. This adaptability ensures that suppliers can integrate these memory solutions at various stages of semiconductor production, from standalone memory chips to embedded roles within complex system-on-chip designs. The inherent simplicity, combined with remarkable performance characteristics, positions ReRAM Memory as a key player in the advancement of secure, high-density computing.
Toggle MRAM technology from Everspin facilitates reliable non-volatile memory solutions ideal for high-performance, demanding environments. Known for its durability and speed, Toggle MRAM provides solutions that bridge the gap between volatile and solid-state storage. This technology is particularly useful for applications requiring fast data retention and retrieval, ensuring integrity even in power failure scenarios. Due to its robust framework, Toggle MRAM has proven indispensable in industries such as aerospace, where the reliability of data storage can be crucial. The non-volatility offers the capability to store data even when powered off, a feature much appreciated in dedicated electronic systems and embedded applications. Furthermore, Toggle MRAM supports a myriad of interfaces, catering to broad industrial and commercial needs. Its architecture ensures it remains versatile and adaptable to continuous technological advancements, making it a future-proof solution for various applications. This blend of performance, reliability, and adaptability makes Toggle MRAM a cornerstone technology in Everspin's suite.
Dolphin Technology offers a comprehensive range of memory IP products, catering to diverse requirements in semiconductor design. These products include a variety of memory compilers, specialty memory, and robust memory test and repair solutions such as Memory BIST. Designed to meet the demands of contemporary low-power and high-density applications, these IPs are built to work across a broad spectrum of process technologies. Advanced power management features, like light and deep sleep modes and dual rails, enable these products to tackle even the toughest low-leakage challenges. What sets these products apart is their flexibility and adaptability, evident in the support for different memory types and process nodes. Dolphin Technology’s memory IPs benefit from seasoned design teams that have proven their mettle in silicon across several generations. Thus, these IPs are not only versatile but also reliable in serving a wide variety of industry needs for technology firms worldwide. Clients can expect memory solutions that are fine-tuned for both power efficiency and performance. Additional capabilities such as power gating cater to ultra-low power devices while achieving a high level of device integration and compatibility. The specialized focus on low noise and rapid cycle times makes these memory solutions highly effective for performance-driven applications. These features collectively make Dolphin Technology’s memory IP an invaluable asset for semiconductor designers striving for innovation and excellence.
TwinBit Gen-1 is a sophisticated embedded memory solution designed for a wide range from 180nm to 55nm process nodes, featuring a memory density that spans from a minimum of 64 bits to a maximum of 512K bits. This IP is ideal for high-endurance applications, offering more than 10,000 program and erase cycles, which makes it a perfect fit for products requiring frequent updates. The technology is implemented within CMOS logic processes without necessitating additional masks or process steps, thereby streamlining its adoption across varied manufacturing nodes. TwinBit Gen-1 is engineered to support low-power and low-voltage operations, making it particularly suitable for IoT devices, microcontroller-based systems, and FPGA configurations where power efficiency is vital. Its wide application scope includes integration into products with field-rewritable firmware and security codes, as well as analog trimming applications. TwinBit Gen-1's built-in test circuits provide a stress-free testing environment, ensuring seamless integration and deployment.
EverOn is a single-port SRAM IP that offers extraordinary power savings, with up to an 80% reduction in dynamic consumption and a 75% decrease in static power. On a 40ULP bulk CMOS process, EverOn supports an operating voltage starting as low as 0.6V, setting records in operational efficiency within a broad voltage range up to 1.21V. This capability allows for new potential in wearable and IoT technologies. The IP's ULV compiler supports a broad set of memory configurations and is designed to be fully adaptable to modern SoC performance requirements, featuring several operational modes that optimize battery life and system performance based on use case needs.
CrossBar's ReRAM IP Cores present a sophisticated solution for enhancing embedded NVM within Microcontroller Units (MCUs) and System-on-Chip (SoC) architectures. Designed to work with advanced semiconductors and ASIC (Application-Specific Integrated Circuit) designs, these cores offer efficient integration, performance enhancement, and reduced energy consumption. The technology seeks to equip contemporary and next-generation chip designs with high-speed, non-volatile memory, enabling faster computation and data handling. Targeting the unique needs of IoT, mobile computing, and consumer electronics, the ReRAM IP Cores deliver scalable memory solutions that exceed traditional flash memory limits. These cores are built to be stackable and compatible with existing process nodes, highlighting their versatility. Furthermore, the integration of ReRAM technology ensures improved energy efficiency, with the added benefit of low latency data access—a critical factor for real-time applications and processing. These IP cores provide a seamless route to incorporating high-performance ReRAM into chips without major redesigns or adjustments. As the demand for seamless, secure data processing grows, this technology enables manufacturers and designers to aptly meet the challenges presented by ever-evolving digital landscapes. By minimizing energy usage while maximizing performance capabilities, these IP cores hold potential for transformative applications in high-speed, secure data processing environments.
Secure OTP by PUFsecurity offers a tamperproof data storage solution designed for the next generation of secure memory needs. It is an enhanced anti-fuse OTP memory that provides secure storage for key data across various forms, ensuring that data in transit, use, or rest remains protected. This technology integrates physical macros, a digital RTL controller, and a resilient anti-tamper shell to guard against hardware attacks. As IoT devices become increasingly susceptible to early-stage attacks, Secure OTP presents a reliable means to safely store sensitive data such as keys and boot code. By transitioning to this tamperproof storage format, devices can effectively mitigate vulnerabilities inherent in legacy storage systems, fortifying data security at the hardware level.
YouDDR is a comprehensive technology encompassing not only the DDR controller, PHY, and I/O but also features specially developed tuning and testing software. It provides a complete subsystem solution to address the complex needs of DDR memory interfaces. The integrated approach allows for cohesive synchronization between the controller and PHY, optimizing performance and reliability. The YouDDR technology ensures seamless integration into a variety of platforms, supporting a broad range of applications from simple consumer electronics to advanced computing systems. By offering enhanced tuning capabilities, it allows developers to fine-tune performance metrics, ensuring that systems can operate within their optimal performance windows. Developers utilizing YouDDR benefit from a thoroughly tested and verified subsystem that significantly simplifies the design cycle. This not only reduces development time but also enhances the likelihood of first-pass success, providing a competitive edge in manufacturing efficiency and product launch speed.
The AndeShape Platforms are designed to streamline system development by providing a diverse suite of IP solutions for SoC architecture. These platforms encompass a variety of product categories, including the AE210P for microcontroller applications, AE300 and AE350 AXI fabric packages for scalable SoCs, and AE250 AHB platform IP. These solutions facilitate efficient system integration with Andes processors. Furthermore, AndeShape offers a sophisticated range of development platforms and debugging tools, such as ADP-XC7K160/410, which reinforce the system design and verification processes, providing a comprehensive environment for the innovative realization of IoT and other embedded applications.
Certus Semiconductor's Digital I/O solutions are engineered to meet various GPIO/ODIO standards. These versatile libraries offer support for standards such as I2C, I3C, SPI, JEDEC CMOS, and more. Designed to withstand extreme conditions, these I/Os incorporate features like ultra-low power consumption, multiple drive strengths, and high levels of ESD protection. These attributes make them suitable for applications requiring resilient performance under harsh conditions. Certus Semiconductor’s offerings also include a variety of advanced features like RGMII-compliant IO cells, offering flexibility for different project needs.
BCD technology uniquely combines the traits of Bipolar, CMOS, and DMOS transistors to deliver efficient power management solutions. This technology is engineered to handle a range of power requirements, making it a versatile choice for applications spanning from consumer electronics to industrial equipment. The blend of these transistor types offers both high voltage handling capabilities and precise digital control. Bipolar transistors contribute excellent analog performance, while CMOS transistors provide intricate digital logic benefits. DMOS transistors add high current and voltage tolerance, resulting in a robust technology that excels in power-driving applications. This combination allows devices to efficiently manage power dissipation, significantly reducing energy waste and enabling longer battery life for portable devices. The BCD process supports the implementation of complex circuits with enhanced reliability. It is well-suited for automotive industries and consumer products requiring solid state power control. With the integration of multiple transistor types, the technology advances superior power management solutions, offering improved efficiency, thermal performance, and scalability. Tower Semiconductor ensures this process is backed by comprehensive design resources, allowing customers to harness the full potential of BCD technology for diverse applications.
aiData is an automated data pipeline tailored for Advanced Driver-Assistance Systems (ADAS) and Autonomous Driving (AD). This system is crucial for processing and transforming extensive real-world driving data into meticulously annotated, training-ready datasets. Its primary focus is on efficiency and precision, significantly reducing the manual labor traditionally associated with data annotation. aiData dramatically speeds up the data preparation process, providing real-time feedback and minimizing data wastage. By employing the aiData Auto Annotator, the system offers superhuman precision in automatically identifying and labeling dynamic entities such as vehicles and pedestrians, achieving significant cost reductions. The implementation of AI-driven data curation and versioning ensures that only the most relevant data is used for model improvement, providing full traceability and customization throughout the data's lifecycle. The pipeline further includes robust metrics for automatically verifying new software outputs, ensuring that performance stays at an optimal level. With aiData, companies are empowered to streamline their ADAS and AD data workflows, ensuring rapid and reliable output from concept to application.
Floadia's LEE Flash G2 transcends standard flash memory by blending the qualities of logic and memory. This provides a dual benefit of non-volatile performance with logic-level operation, achieved through its unique tri-gate transistor architecture. The G2 cell combines a SONOS transistor with switching transistors, offering high-speed, non-volatile SRAM capabilities. The G2 memory's design addresses one of the major challenges in memory technology: reducing power consumption. By employing a programming current that is substantially lower than conventional floating gate NVMs, it considerably lowers power demands. This technology allows for the memory and logic circuits to be connected directly, enabling more efficient chip architectures. Additionally, the LEE Flash G2 supports a novel application where it can function as Non-Volatile SRAM (NV-SRAM). This combination eliminates the need for dedicated flash blocks, thereby streamlining the microcontroller architecture and enabling rapid wake-up or sleep modes. Such a configuration enhances the overall efficiency of systems, especially in complex SOC and FPGA designs.
Ventana's System IP is a critical component for next-generation RISC-V platforms, providing essential support for integrating high-performance CPUs into sophisticated computing architectures. This IP block enables system-level functionality that aligns with the stringent demands of modern computing environments, from cloud infrastructures to advanced automotive systems. Equipped with comprehensive system management capabilities, the System IP includes crucial components such as memory management units and I/O handling protocols that enhance the overall efficiency and reliability of RISC-V-based systems. It is optimized for virtualization and robust security, essential for maintaining integrity in high-traffic data centers. The System IP supports seamless integration with Ventana's Veyron processor families, ensuring scalability and consistent performance under demanding workloads. Its design allows for easy customization, making it an ideal choice for companies looking to innovate and expand within the rapidly evolving field of high-performance computing.
PermSRAM is a dynamic memory macro known for its adaptability and efficiency. It is built on a foundry standard CMOS platform and supports a broad spectrum of process nodes ranging from 180nm to 28nm and beyond. This memory solution offers various functionalities, such as one-time programmable ROM and a pseudo multi-time programmable ROM, featuring a multi-page configuration. The memory sizes available span from 64 bits to 512K bits, integrating a non-rewritable hardware safety lock for the secure storage of critical security codes. PermSRAM is well-regarded for its consistent performance, offering high reliability and yielding stable results in various conditions. This makes it particularly suitable for applications like security code storage, program storage, and analog trimming. The technology is designed to be tamper-resistant, utilizing a charge trap memory mechanism that ensures data security. Furthermore, PermSRAM operates without the need for a charge pump during read operations, simplifying its integration into different systems. Beyond these technical features, PermSRAM includes a built-in self-test circuit, which facilitates stress-free testing procedures. It supports conventional testing equipment and is engineered to perform reliably in automotive-grade environments, even under high temperatures exceeding 150°C. With its minimal silicon area usage and robust security features, PermSRAM is a versatile choice for a wide range of industrial applications.
These customizable and power-efficient IP platforms are designed to accelerate the time-to-market for IoT products. Each platform includes essential building blocks for smart and secure IoT devices. They are available with ARM and RISC-V processors, supporting a range of applications such as beacons, smart sensors, and connected audio. Pre-validated and ready for integration, these platforms are the backbone for IoT device development, ensuring that prototypes transition smoothly to production with minimal power requirements and maximum efficiency.
Spectral CustomIP encompasses an expansive suite of specialized memory architectures, tailored for diverse integrated circuit applications. Known for breadth in memory compiler designs, Spectral offers solutions like Binary and Ternary CAMs, various Multi-Ported memories, Low Voltage SRAMs, and advanced cache configurations. These bespoke designs integrate either foundry-standard or custom-designed bit cells providing robust performance across varied operational scenarios. The CustomIP products are engineered for low dynamic power usage and high density, utilizing Spectral’s Memory Development Platform. Available in source code form, these solutions offer users the flexibility to modify designs, adapt them for new technologies, or extend capabilities—facilitating seamless integration within standard CMOS processes or more advanced SOI and embedded Flash processes. Spectral's proprietary SpectralTrak technology enhances CustomIP with precise environmental monitoring, ensuring operational integrity through real-time Process, Voltage, and Temperature adjustments. With options like advanced compiler features, multi-banked architectures, and standalone or compiler instances, Spectral CustomIP suits businesses striving to distinguish their IC offerings with unique, high-performance memory solutions.
TwinBit Gen-2 marks an advanced step in NSCore's non-volatile memory offerings, designed for process nodes from 40nm to 22nm and potentially beyond. Like its predecessor, Gen-2 integrates smoothly into existing manufacturing processes without the need for additional masks or process alterations. This IP is enhanced by its use of the novel Pch Schottky Non-Volatile Memory Cell, which is engineered to optimize for ultra-low-power operations. A key attribute of TwinBit Gen-2 is its capacity to support high-density non-volatile memory demands with improved energy efficiency, making it apt for devices where power consumption is pivotal. Its hot carrier injection control via cell bias, paired with its unique memory cell configuration, facilitates versatile memory operations that are fundamental in modern CMOS technology. Applications for TwinBit Gen-2 encompass high-demand fields such as embedded system design and battery-sensitive environments. Its streamlined design and process adaptation capabilities maintain NSCore's commitment to delivering state-of-the-art memory technologies that meet stringent energy and performance standards.
The AHB-Lite Memory module is a fully parameterized component tailored for integration in AHB-Lite based designs. As a soft IP, it provides flexible and efficient on-chip memory access, offering a simple integration path into various system architectures. This memory module is crafted to support a wide array of applications that require dependable and swift data storage solutions. Roa Logic has designed this component to embody high reliability and operational efficiency. The memory’s design is optimized for quick data retrieval and storage, making it a critical component for applications that demand immediate access to data. Its adaptability accommodates different data storage requirements, ensuring that it aligns with the performance demands of contemporary embedded systems. The AHB-Lite Memory module guarantees seamless integration and stable operational capacity, reinforcing Roa Logic's dedication to offering solutions that drive system performance. Its configurable design ensures it's well-suited to both small-scale and expansive architectures, maintaining efficiency across diverse computing environments.
Designed to address the evolving power needs of integrated circuits, Xenergic's High-Speed Low-Power SRAM emerges as a leading solution for energy-conscious applications. By optimizing both dynamic power and leakage, this SRAM offers a 70% to 90% reduction in power usage, making it ideal for sensors, wearables, and other low-power devices. Its architecture allows for high efficiency in edge computing applications, minimizing latency while bringing computation closer to the data source.\n\nWith critical features like reduced leakage and dynamic power consumption, this SRAM ensures that your SoC stays competitive in terms of power efficiency. By enabling the SoC to serve multiple features without significant energy drain, it becomes a perfect match for always-on mobile and IoT applications, enhancing user convenience and experience. The SRAM integrates seamlessly into existing designs, aided by comprehensive memory interface views and support for a range of standard optional memory features.
Offering a zero additional mask solution, LEE Flash ZT stands for a zero-technology-cost addition to Floadia’s flash memory repertoire. It is particularly valued for its minimal impact on manufacturing processes while maintaining robust performance attributes inherent to Floadia's memory products. This memory eliminates additional mask requirements in the production process, which not only reduces costs but also simplifies the manufacturing workflow. The ZT model effectively retains the essential features of robustness and high reliability, necessary for modern semiconductor applications, through its efficient architecture. In terms of functionality, the ZT adheres to high standards of charge retention and endurance, similar to other products in Floadia's lineup. With this design choice, Floadia ensures that the technology maintains the integrity and reliability expected from advanced embedded memory solutions, making it suitable for a wide array of industrial applications.
The LEE Flash G1 from Floadia is designed as a cost-effective SONOS technology solution. This nonvolatile memory offers remarkable cost efficiency, employing a low-cost process that requires minimal additional masks, thus reducing fabrication complexity. The design ensures compatibility with existing semiconductor processes, making it economical without sacrificing quality or performance. This flash memory is built on a robust SONOS architecture, which stands out for its high reliability, a crucial factor in memory retention and endurance. The electric charge retention mechanism in SONOS is distinct from the traditional floating gate charge storage, offering superior reliability due to its resistance to leakage through defects. By utilizing Fowler Nordheim (FN) tunneling, the G1 guarantees minimal oxide damage and sustains a high level of performance even after many cycles. Additionally, the G1's design focuses on simplifying manufacturing processes by using common materials, allowing for seamless integration into existing foundry workflows. This ease of implementation, combined with its robustness and low power requirements, makes the LEE Flash G1 a key product in high-demand, cost-sensitive applications.
The Xilinx Serial PROM Programmer by Roman-Jones is a competitive solution designed to streamline the programming process for Xilinx Serial PROM devices. This acclaimed programmer is recognized for its affordability and ease of use, demonstrating exceptional compatibility with any Xilinx Serial PROM part. It operates through a simple parallel port interface, obviating the need for specialized interface cards. Users can benefit from software support across multiple platforms, including DOS and various Windows versions, and the device is powered conveniently by a 9-volt battery, eliminating the requirement for an AC adapter. This product includes an external programmer coupled with proprietary interface software, which has received certification and endorsement from Xilinx. Its setup is straightforward, allowing for seamless co-existence with existing printer connections using an AB switchbox. The package supports a range of industry-standard file formats such as Intel Hex, Motorola S-Record, and Binary files crafted by Xilinx compilers, catering to diverse programming needs. Further enhancing its utility, the programmer includes options for socket adapters, enabling compatibility with varying package types including the 8-pin DIP and additional configurations. This adaptability ensures the programmer fulfills a wide array of customization requirements, making it a versatile tool for any electronics professional working with Xilinx Serial PROMs.
Analog Bits provides robust I/O solutions that are essential for the efficient transfer of signals between semiconductor devices and their external environment. These input/output interfaces are designed to meet the most demanding performance criteria, ensuring fast data rates and minimal signal distortion. Their I/O IP solutions can accommodate a variety of protocols, including high-speed digital interfaces and analog conversions, offering versatility and support for applications such as networking, data processing, and consumer electronics. By optimizing the signal integrity and electromagnetic compatibility, these I/Os enhance the overall system performance. Equipped with advanced features for low power consumption, these I/Os contribute to reducing the overall energy footprint of semiconductor devices, making them ideal for battery-operated devices and environmentally sensitive applications. Analog Bits' I/Os are comprehensively integrated to function seamlessly within mixed-signal environments, further broadening their application range.
LEE Fuse ZA from Floadia offers a unique approach with its zero additional mask anti-fuse memory technology. Designed for one-time programmable (OTP) applications, this memory type is cost-efficient and easily adaptable to existing manufacturing processes without requiring additional masks. The ZA fuse is characterized by its reliable anti-fuse mechanism, providing secure data retention. It excels in applications requiring a permanent programming solution and offers high endurance due to its robust design. By eliminating the need for complex mask layers, the LEE Fuse ZA significantly cuts down production costs while maintaining superior performance. Its compatibility with standard CMOS processes further underscores its suitability for various implementations where cost efficiency and reliability are paramount. The design guarantees effective fuse operation, making the LEE Fuse ZA a popular choice for applications in diverse sectors needing a robust OTP solution.
CodaCache Last-Level Cache is an advanced, shared cache solution specifically designed to minimize memory latency and boost SoC performance. Its configurable nature allows it to be tailored to specific design needs, optimizing data flow and enhancing power efficiency across the chip. This cache helps overcome common SoC challenges related to timing closure, performance, and layout congestion by providing a flexible caching architecture that ensures effective data management and reliable operations. Its role in optimizing memory hierarchy enhances computational speeds and system reliability. CodaCache is particularly beneficial for applications that require rapid access to large data sets, ensuring that power consumption is minimized while maintaining high performance standards. Its versatility and efficiency make it a top choice for industries striving for high data throughput and low latency operations.
The High Bandwidth Memory IP offered by Global Unichip Corp. (GUC) is designed to handle the increasing data demand in today’s complex computing environments. This product efficiently stacks multiple memory dies to achieve high data throughput and enhanced performance. Tailored for applications in artificial intelligence and high-performance computing, this IP ensures seamless data flow and effective bandwidth utilization. Engineered for advanced computing tasks, the High Bandwidth Memory integrates seamlessly with other system components. It features a sophisticated design that supports faster memory clock speeds while maintaining energy efficiency. The product's compatibility with the latest process nodes magnifies its utility across various platforms, underscoring its role in enhancing system performance. The robust design of the High Bandwidth Memory IP underscores GUC’s expertise in semiconductor solutions. Through meticulous engineering, this product maximizes data processing capabilities while minimizing latency, catering to the demands of next-generation computing applications. It offers a cornerstone feature for systems that require rapid and reliable data handling, ensuring enhanced compute performance across sectors.
Tower Semiconductor's non-volatile memory solutions leverage cutting-edge design to enhance data retention and simplify integration within various devices. The solutions include advanced Y-Flash and e-Fuse technologies, offering reliable data storage options that retain information without a constant power supply. This makes them ideal for applications requiring persistent data, ranging from consumer electronics to critical industrial controls. The NVM solutions are designed to offer high endurance and retention periods, granting devices the capability to operate effectively across diverse environmental conditions. Y-Flash supports fast write and erase times, while e-Fuse enables secure, permanent programming options, prototyping a versatile memory solution suitable for field programming and personalization. In addition to their technological sophistication, these solutions are supported by a comprehensive suite of design resources including detailed libraries and validation data. This ensures seamless integration with existing architectures, allowing designers to rapidly bring enhancements to market. As such, Tower Semiconductor's NVM offerings signify a blend of reliability, adaptability, and innovation in modern data storage technology.
DRAM memory modules from Avant Technology are engineered to meet the demands of applications requiring both speed and large capacity. Known for their rapid data access and storage capabilities, DRAM modules are indispensable in gaming, point-of-sale systems, and medical equipment where quick data retrieval is essential. Avant's DRAM modules adhere to JEDEC standards and offer a variety of configurations like UDIMM, SODIMM, and ECC DIMM, catering to both industrial and consumer requirements. These modules are designed for high performance, supporting interfaces like DDR3, DDR4, and DDR5, which are critical for maintaining system efficiency and reliability. Designed to operate in diverse temperature ranges, Avant’s DRAM solutions can handle both industrial and commercial environments. Whether for gaming consoles or medical devices, these memory modules provide the necessary bandwidth and low power consumption needed for high-demand tasks.
The Cyclone V FPGA with Integrated PQC Processor by ResQuant is a specialized product that comes pre-equipped with a comprehensive NIST PQC cryptography suite. This FPGA is tailored for applications requiring a robust proof-of-concept for quantum-safe implementations. It ensures seamless integration into existing systems, providing a practical platform for testing and deployment in quantum-secure environments. This product is available at a competitive price and represents an ideal starting point for entities looking to explore and adopt quantum-resilient technologies. Its configuration allows for straightforward implementation in diverse hardware infrastructures while offering a reliable option for organizations aiming to stay ahead in the evolving cyber security landscape. By incorporating the latest in cryptographic standards and ensuring vendor independence, the Cyclone V FPGA with Integrated PQC Processor by ResQuant effectively bridges current hardware technologies and future-proof security needs. It supports industry-wide applications, from IoT and ICT to automotive and military sectors, underscoring ResQuant's versatility in hardware security solutions.
Dolphin Semiconductor's Foundation IPs are crafted to enhance the efficiency and cost-effectiveness of System-on-Chip (SoC) designs through robust offerings of embedded memories and standard-cell libraries. Specially designed for energy-efficient applications, these components help optimize space and power usage while ensuring the cutting-edge performance of modern electronic devices. Incorporated within Dolphin's Foundation IP portfolio are standard cells that allow chip designers to achieve up to 30% density gains at the cell level, compared to conventional libraries. Further, these components are engineered to support always-on applications with exceptionally low leakage rates. The Foundation IP suite optimizes SoC designs by delivering dramatically reduced leakage and area consumption, avoiding the additional cost and complexity of using a regulator. The memory compilers within Foundation IPs offer ultra-low power and high-density memory solutions, including SRAM and via-programmable ROMs. These are formulated to deliver up to 50% energy savings, providing flexibility with multi-power modes and adaptable to varied instances. With optimization for TSMC processes, Dolphin's Foundation IPs provide an essential backbone for creating innovative, efficient, and sustainable SoC products.
SuperFlash® Technology is built on the foundation of a proprietary split-gate Flash memory cell, which offers a robust, cost-effective, and high-performance solution for System-on-Chip (SoC) functionalities. The technology excels in maintaining its core structure and operating parameters due to its simple array architecture, enhancing its reliability. Since its inception in 1992, SuperFlash® memory has proven its capability through high endurance for write cycles, excellent data retention, and consistent performance under high temperatures. This technology's design simplifies integration while offering compatibility with standard silicon CMOS processes and scalability from 1 micron to 110 nm nodes, ensuring its adaptability across manufacturing processes.
The Vega eFPGA is a flexible programmable solution crafted to enhance SoC designs with substantial ease and efficiency. This IP is designed to offer multiple advantages such as increased performance, reduced costs, secure IP handling, and ease of integration. The Vega eFPGA boasts a versatile architecture allowing for tailored configurations to suit varying application requirements. This IP includes configurable tiles like CLB (Configurable Logic Blocks), BRAM (Block RAM), and DSP (Digital Signal Processing) units. The CLB part includes eight 6-input Lookup Tables that provide dual outputs, and also an optional configuration with a fast adder having a carry chain. The BRAM supports 36Kb dual-port memory and offers flexibility for different configurations, while the DSP component is designed for complex arithmetic functions with its 18x20 multipliers and a wide 64-bit accumulator. Focused on allowing easy system design and acceleration, Vega eFPGA ensures seamless integration and verification into any SoC design. It is backed by a robust EDA toolset and features that allow significant customization, making it adaptable to any semiconductor fabrication process. This flexibility and technological robustness places the Vega eFPGA as a standout choice for developing innovative and complex programmable logic solutions.
The SoC Platform by SEMIFIVE enables swift and minimal-effort design of system-on-chip solutions through their streamlined platforms. Built with silicon-proven IPs and optimized methodologies, these platforms significantly reduce costs and risks while ensuring a faster turnaround time. The platform supports domain-specific architectures and offers a pre-configured and verified IP pool, facilitating quick hardware and software bring-up. This platform stands out for its ability to turn ideas into silicon by leveraging SEMIFIVE’s infrastructure and IP partnerships. It promises substantial cost reduction in areas like design NRE, fabrication, and IP licenses, offering savings upwards of 50% compared to industry norms. Its rapid development process is poised to cut development times in half, maintaining high levels of design and verification reusability. The SoC Platform also minimizes engineering risks associated with the complexities of cutting-edge process technologies. By utilizing pre-verified platform IP pools and silicon-proven design components, SEMIFIVE offers a highly reliable and efficient path from concept to silicon production.
The NuRAM Low Power Memory represents a state-of-the-art memory solution utilizing advanced MRAM technology. Engineered to provide rapid access times and extremely low leakage power, NuRAM is significantly more efficient in terms of cell area compared to traditional SRAM, being up to 2.5 times smaller. This makes it an ideal replacement for on-chip SRAM or embedded Flash, particularly in power-sensitive environments like AI or edge applications. The emphasis on optimizing power consumption makes NuRAM an attractive choice for enhancing the performance of xPU or ASIC designs. As modern applications demand higher efficiency, NuRAM stands out by offering crucial improvements in power management without sacrificing speed or stability. The technology offers a compelling choice for those seeking to upgrade their current systems with memory solutions that extend battery life and deliver impressive performance. NuRAM is particularly beneficial in environments where minimizing power usage is critical while maintaining high-speed operations. This makes it a preferred choice for applications ranging from wearables to high-performance computing at the edge.
NeoPUF sets a high standard in semiconductor security by offering exceptionally fast random number generation capabilities that reach speeds up to 100 times faster than conventional methods. It is a versatile hardware security IP that forms the backbone of secure chips designed to combat evolving digital threats. NeoPUF's unique design offers an intrinsic level of security that harnesses the physical characteristics of silicon to create a naturally unclonable identifier for each chip. Used extensively in fields where security is paramount, NeoPUF helps ensure the integrity and confidentiality of data throughout the lifecycle of semiconductor devices. It's critically important in sectors such as IoT, automotive, and enterprise computing, where the cost of a security breach is high. The integration of NeoPUF provides a secure basis for implementing complex encryption keys and enhances the trustworthiness of digital transactions. By employing cutting-edge cryptographic measures, NeoPUF is considered a suitable foundation for future-proofing semiconductor systems against the anticipated quantum computing threats. It forms part of a comprehensive security solution, offering hardware-based security features that significantly enhance the reliability and safety of modern electronic devices.
Designed to scale effectively with the growing needs for high-volume data storage, CrossBar's ReRAM IP Cores for High-Density Data Storage offer clients the ability to manage extensive datasets with ease. The cores excel in providing high-speed data access and retrieval capabilities, making them an ideal choice for data centers, AI infrastructure, and complex analytics platforms. These cores support dense data storage configurations within devices, far surpassing the performance specifications of traditional memory options. CrossBar's ReRAM cores offer significant energy savings in storage operations, enabling data centers to drastically reduce power consumption while increasing throughput and efficiency. This green approach to data storage not only enhances computational performance but also aligns with global sustainability efforts to lower energy expenditure. With high-density capabilities, the ReRAM cores play a critical role in optimizing large-scale data handling and facilitate emerging trends like real-time analytics and advanced machine learning algorithms. Integrated into existing infrastructures, these ReRAM cores transcend traditional memory solutions. The technology's flexibility allows for customization, accommodating varied client needs and extending beyond standard operational limitations. Whether deployed in cloud services, enterprise data warehousing, or sophisticated AI training models, CrossBar's ReRAM cores ensure robust performance, reliability, and scalability in handling complex storage challenges.
VeriSyno's Digital Systems and Security Solutions encompass a comprehensive set of offerings tailored to address the needs of secure data processing environments. These solutions feature a range of digital IP cores that can enhance the operational capabilities of processors, memory controllers, and communication interfaces. By leveraging these digital assets, VeriSyno aims to provide robust and efficient systems that prioritize security and performance. Designed to integrate seamlessly with existing hardware, these solutions are particularly critical in applications prone to demand high security, such as financial transactions and sensitive data processing. The security IPs ensure that data integrity and confidentiality are upheld, leveraging sophisticated encryption and protection mechanisms. Moreover, VeriSyno is agile in customizing its IP solutions to fit different process nodes and technological requirements, aiding in both rapid deployment and scalability of digital systems. This makes their offerings especially attractive to clients requiring high-end security implementations without compromising on performance or reliability.
The TSP1 Neural Network Accelerator from ABR is an advanced AI chip designed to cater to the demands of real-time processing with reduced power consumption. Harnessing state-of-the-art technologies like the Legendre Memory Unit, this chip excels in time-series data handling, making it ideal for applications that require energy efficiency without compromising on performance. Its architecture supports sophisticated signal recognition and natural language processing, facilitating its use in diverse environments. Particularly suited for battery-powered devices, the TSP1 integrates seamlessly with biosensors and voice interfaces, offering versatile application in areas such as AR/VR, smart homes, and healthcare devices. With self-sufficient processing capabilities, the chip is equipped to manage multiple sensor signals and supports interfaces such as SPI and I2C for enhanced connectivity. Designed with efficiency at its core, the TSP1 boasts features like an integrated DC-DC power supply and a compact package option, ensuring it meets the rigorous demands of edge computing. With low latency and high data efficiency, this chip sets a new standard for AI-driven innovation in technology.
The SmartMem Subsystem is designed to enhance memory functionality through a synthesisable and configurable architecture. This memory subsystem significantly boosts power efficiencies and improves both performance and endurance. Not limited to just Numem's own products, it can easily interface with other high-performance MRAMs, RRAM, and Flash technologies, offering versatility across different hardware needs. Built with Numem's thorough memory expertise and innovative patents, the SmartMem Subsystem delivers MRAM performance that rivals SRAM, characterized by much lower standby power. Its intelligent power management system controls MRAM’s non-volatile nature for ultra-efficient operation, making it robust against endurance challenges while seamlessly integrating into varied systems, whether in edge devices or expansive data centers. The subsystem supports software-defined scalability, which negates the necessity for new hardware designs. This makes it an excellent choice for future-proofing memory solutions in AI workloads, ensuring agility and adaptability across rapid advancements in AI applications.
MiniMiser is notable for its versatile multi-port register file architecture that caters to both high-performance and low-energy consumption demands. This architecture is not tied to a specific foundry bit cell, granting it high adaptability and direct system logic integration, which is crucial for processing in complex devices like wearables with integrated AI capabilities. MiniMiser innovatively minimizes power consumption by over 50%, further extending device operating windows and presenting a fresh approach to balancing power efficiency against computational needs.
The Absolute Linear Position Sensors developed by Riftek Europe are precision instruments designed to measure and check displacements, dimensions, and surface profiles. Utilizing absolute linear encoder technology, these sensors promise an innovative approach to absolute measurement over ranges of 3 mm to 55 mm with a resolution of 0.1 um. These sensors address the demand for accurate measurement within manufacturing environments, ensuring that the run-outs and deformations are controlled to enhance product quality. They are built for reliability, delivering robust performance in challenging industrial conditions where precision is a crucial aspect of equipment and product assembly. Engineered to provide real-time feedback, these sensors aid in automating quality checks and maintaining operational efficiencies. They offer manufacturers the ability to optimize processes and reduce errors, further promoting productivity and reducing material wastage due to inaccurate measurement during production.
Tailored for applications requiring secure non-volatile memory, CrossBar's ReRAM as FTP/OTP Memory offers a refined solution for few-time programmable (FTP) and one-time programmable (OTP) needs. Leveraging the intrinsic properties of ReRAM technology, these applications benefit from reduced write requirements and minimized area without compromising security or performance. This ReRAM variant integrates effectively within standard CMOS processes, providing adaptability whether used independently or embedded within more complex systems. Its non-volatility and high density make it a preferred choice for secure applications where cost-efficient data integrity is essential. The technology supports diverse applications across numerous sectors including automotive, medical, and industrial systems, where quick response times and reliability are critical. The FTP/OTP ReRAM enables provisioning for physical unclonable functions (PUF), further enhancing its security capabilities. Such an implementation provides resistance to invasive attacks and maintains data integrity even under adverse conditions. These features position ReRAM as a powerful tool for managing sensitive data operations and broad pursuits in modern digital infrastructures.
GCRAM On-Chip Memory represents a significant advancement in semiconductor technology, addressing the limitations of traditional SRAM by offering substantial improvements in area and power efficiency. In high-demand applications, such as AI, machine learning, augmented reality, and high-performance computing, GCRAM provides up to 50% silicon area savings and can reduce power consumption by up to ten times compared to standard SRAM. This makes it particularly valuable for advanced technology nodes where SRAM scaling reaches its limits due to increased size and cost constraints. By being fully compatible with the standard CMOS process flow, GCRAM eliminates the need for additional processing steps or costs, standing out as a drop-in alternative to SRAM. It is engineered to seamlessly extend the practical applications of Moore’s Law for embedded memory, effectively compensating for SRAM's inabilities in modern chip design. The adaptability of GCRAM allows semiconductor firms to easily implement it, replacing SRAM in their designs, thus optimizing the chip production process. GCRAM technology is poised to serve a critical role in a variety of sectors including automotive, 5G networks, and data centers, facilitating the achievement of desired performance levels without incurring additional costs. Through GCRAM, RAAAM offers a sustainable path forward for the semiconductor industry, adapting to the evolving technological landscape while empowering applications to meet what modern workloads demand.
The I-fuse technology from Attopsemi is a revolutionary OTP memory design characterized by its non-explosive action, circumventing the limitations of traditional anti-fuse technology. I-fuse is crafted without requiring specialized masks, utilizing standard logic design processes, allowing for broad compatibility across various tech platforms. Operating across a substantial spectrum from 0.7 µm to 22 nm, it promises exceptional reliability and efficiency, offering higher testability and competitive advantages in size and power use. I-fuse stands out due to its scalability, adaptability for varied applications, and compliance with the AEC-Q100 Grade 0 specification, which makes it robust enough for applications where reliability can’t be compromised. This OTP technology provides enhanced flexibility and precision, especially in automotive and industrial settings. It leverages Attopsemi's extensive patent portfolio and production experience, incorporating the company's 90+ patents into its design principles. With the shipment of over 10,000 wafers per month, I-fuse has demonstrated its practical use and benefits across hundreds of enterprises globally, performing with no reported failures and ensuring a lasting footprint in the market.
The SRAM provided by DXCorr stands as a highly efficient and tailored solution, designed to address the demands of modern data storage. Known for its high-speed performance, this memory technology is pivotal in applications requiring rapid data access. SRAMS offer lower latency and power consumption compared to alternatives, making them ideal for high-performance computing and processing tasks. The customizability of DXCorr's SRAM allows for adaptations that suit specific requirements, reinforcing its use in a variety of technological domains. These memory components play an essential role in embedded systems, enhancing their operational capacity through rapid data retrieval and storage capabilities. With a focus on improving the speed and efficiency of these systems, DXCorr's SRAM offerings cater to the needs of sectors ranging from consumer electronics to industrial applications. Through meticulous design, DXCorr ensures that their SRAM modules maintain consistency and reliability under various operational conditions. The SRAM solutions are born from DXCorr's innovative approach to memory design, further facilitating integration into complex chip architectures. This customization potential means that each SRAM unit delivered can be fine-tuned to meet the power, performance, and area (PPA) requirements unique to its intended application, thereby optimizing the end-user experience across numerous platforms.
OPENEDGES offers a DDR Memory Controller which serves as a critical component in managing and optimizing memory operations in contemporary computing systems. This controller interfaces directly with DDR memory, orchestrating read and write operations while ensuring peak data throughput and minimal latency. The architecture of this memory controller is designed to manage various memory channels and is highly configurable, allowing for adaptations specific to customer requirements. By leveraging intelligent algorithms, it efficiently schedules task operations, thereby improving overall performance and reducing power consumption. The controller's versatility makes it ideal for systems that demand high data rates and reliable memory management. In addition to performance benefits, the OPENEDGES DDR Memory Controller also incorporates features to ensure system integrity and data protection. Error correction and detection protocols are embedded to safeguard against data corruption, which is critical for maintaining system reliability in mission-critical applications. Its capability to adapt to various DDR protocols also ensures future-proofing the system against evolving memory standards.
Spectral MemoryIP offers a comprehensive range of silicon-proven, high-density, low-power Static Random Access Memories. This robust library includes six standard compiler architectures such as Single Port & Dual Port SRAMs, ROM, and several variations of Register Files. Leveraging either foundry or bespoke bit cell designs crafted by Spectral, these memories combine high-density advantages with low power consumption and performance-oriented circuitry. This dual benefit ensures high-speed operations with minimal energy drain. A notable feature of Spectral MemoryIP is its adaptability, facilitated through the proprietary Memory Development Platform. Available in source code format, designers are empowered to tweak the designs, adopt them for new technologies, or enhance existing functionalities. These memories see widespread usage in standard CMOS process technologies and offer a rich array of features like varied power rails, multiple aspect ratios, and a multi-bank architecture. Spectral's innovative PVT monitoring technology, known as SpectralTrak, is integrated into each memory solution to ensure resilient operation under various environmental conditions. With a user-friendly memory compiler set, Spectral MemoryIP is optimized for diverse embedded storage demands delivering essential capabilities for chip manufacturers and designers.
Xenergic's Ultra-High-Speed SRAM is a game-changer in the domain of high-performance applications. This memory solution excels at delivering speeds approximately 30% faster than the competition, while maintaining or reducing power consumption and area footprint. It is crafted to meet the rigorous demands of high-speed communications, data-intensive AI, and other big data applications where real-time data processing is crucial.\n\nThe standout feature of this SRAM is its ability to prevent bottlenecks in memory, ensuring that high-performance computing applications maintain peak efficiency. This is particularly advantageous in environments that handle extensive data throughput, such as HPC and autonomous systems, where rapid data access and transfer are essential to system performance.\n\nBy providing cutting-edge frequencies, the Ultra-High-Speed SRAM supports the growing need for high-speed data processing and transfer, setting a higher benchmark for speed and efficiency. Its robust design is structured to seamlessly integrate with existing infrastructures, providing a comprehensive solution for diverse industrial requirements.
Join the world's most advanced semiconductor IP marketplace!
It's free, and you'll get all the tools you need to discover IP, meet vendors and manage your IP workflow!
No credit card or payment details required.
Join the world's most advanced AI-powered semiconductor IP marketplace!
It's free, and you'll get all the tools you need to advertise and discover semiconductor IP, keep up-to-date with the latest semiconductor news and more!
Plus we'll send you our free weekly report on the semiconductor industry and the latest IP launches!