All IPs > Interface Controller & PHY > Other
Interface Controller and PHY semiconductor IPs play a crucial role in facilitating effective communication between different components within electronic devices. In the 'Other' category, you will find a diverse range of IP solutions that are tailored for specialized and niche applications. These IPs ensure that data is accurately transferred and interpreted across interfaces, regardless of the complexity or the technical specifications of the systems involved. Whether for high-speed communication or power efficiency, these IPs serve critical roles in the functionality and performance of modern tech products.
The 'Other' category acts as a repository for unique and often custom-tailored solutions that do not fit the conventional categories of Interface Controllers or PHYs. These semiconductor IPs are instrumental in achieving connectivity goals when traditional solutions may not suffice. They provide engineers with the flexibility to integrate advanced functionalities without altering the fundamental architecture of a system. From supporting emerging protocols to enhancing legacy systems, these semiconductor IPs cater to evolving connectivity demands.
Products within this category often cover specialized interfaces and custom PHY requirements that address specific application needs. These include complex system-in-package (SiP) integrations and highly technical applications in sectors such as telecommunications, automotive, and industrial electronics. The uniqueness of these IPs enables them to tackle challenges associated with high-performance computing, real-time data processing, and efficient data transfer without compromising on speed or reliability.
Exploring the 'Other' category opens up opportunities for innovation and development. Developers looking to customize or extend the capabilities of existing platforms can leverage these IPs to enhance device functionality and market value. As devices become more interconnected and data-driven, the role of versatile and adaptive Interface Controller and PHY semiconductor IPs become even more critical in advancing technology towards new frontiers.
The Camera PHY Interface tailored for advanced semiconductor processes is integral for optimizing high-speed data transmission between image sensors and processors. Specialized to accommodate the latest advancements in process technology, this interface IP ensures superior performance while maintaining minimal power consumption and enhanced data integrity. By leveraging cutting-edge technology, it is engineered to handle multiple data lanes simultaneously, providing flexibility and adaptability across various applications in the visual data industry. This interface finds its utility in high-definition imaging solutions, contributing significantly to industries such as automotive, consumer electronics, medical imaging, and surveillance systems. Its design is aimed at simplifying integration in complex systems while providing robust data throughput and decreasing electromagnetic interference to ensure unmitigated signal clarity. With compatibility extending to the sub-LVDS, MIPI D-PHY, and HiSPi standards, this Camera PHY Interface IP is adaptable for evolving interface technologies, ensuring that devices can benefit from advanced connectivity protocols without compromising on performance metrics. The adoption of this IP supports industry trends towards miniaturization and reduced device footprints, thus making it indispensable for modern imaging solutions.
The Qualitas eDP RX PHY IP supports the eDP RX v1.5a standard. This core IP commonly used for connecting a timing controller (TCON) to a host processor.
Sofics has verified its ESD protection clamps on technology nodes between 0.25um CMOS down to 3nm across various fabs and foundries. The ESD clamps are silicon and product proven in more than 5000 mass produced IC-products. The cells provide competitive advantage through improved yield, reduced silicon footprint and enable low-leakage, high-speed or high voltage tolerant interfaces. The Analog I/O clamp described in this document can be used for 3.3V pads in the TSMC 3nm FinFET technology. The ESD clamp is designed to provide 2kV HBM protection for 3.3V interfaces. It features a small silicon footprint.
Sofics has verified its ESD protection clamps on technology nodes between 0.25um CMOS down to 3nm across various fabs and foundries. The ESD clamps are silicon and product proven in more than 5000 mass produced IC-products. The cells provide competitive advantage through improved yield, reduced silicon footprint and enable low-leakage, high-speed or high voltage tolerant interfaces. The Analog I/O clamp described in this document can be used for 3.3V pads in the TSMC 7nm FinFET technology. The ESD clamp is designed to provide 2kV HBM protection for 3.3V interfaces. It features a small silicon footprint.
Sofics has verified its TakeCharge ESD protection clamps on technology nodes between 0.25um CMOS down to 3nm across various fabs and foundries. The ESD clamps are silicon and product proven in more than 5000 mass produced IC-products. The cells provide competitive advantage through improved yield, reduced silicon footprint and enable low-leakage, high-speed or high voltage tolerant interfaces. The ESD protection described in this document can be used for 1.6V chiplet (die-2-die) interface pads in the GF 22nm FDX technology. The ESD robustness is strongly reduced in order to reduce the size and capacitance.
Sofics has verified its ESD protection clamps on technology nodes between 0.25um CMOS down to 3nm across various fabs and foundries. The ESD clamps are silicon and product proven in more than 5000 mass produced IC-products. The cells provide competitive advantage through improved yield, reduced silicon footprint and enable low-leakage, high-speed or high voltage tolerant interfaces. The Analog I/O clamp described in this document can be used for 2.5V pads in the TSMC 5nm FinFET technology. The ESD clamp is designed to provide 2kV HBM protection for 2.5V interfaces. It features a small silicon footprint.
Unmanaged Ethernet Switch IP cores are a family of Ethernet switching IPs from Comcores that provide a variety of configurations, including 1G, 1G/ 10G, 10G, and 10G/25G options. The unmanaged Ethernet switch IP cores family is a size-optimized implementation of non-blocking crossbar switches designed to support wire-speed packet processing and forwarding. The unmanaged Ethernet switch IP cores family features FCS validation/recalculation, MAC learning/forwarding/ageing and VLAN tagging including implementing a store-and-forward switching architecture. The number of ports is configurable at compile time, making the unmanaged Ethernet switch IP cores solution highly flexible and the solutions from Comcores are silicon-agnostic, making them suitable for implementation in any ASIC, FPGA, or ASSP technology.
The 10M/100M/1G/10G/25G Ethernet Switching IP is an advanced Ethernet TSN Switch IP with an extensive set of QoS features and statistics. The Comcores Ethernet TSN Switch IP supports up to 8 queues, classification, VLAN 802.1Q, multicast and broadcast as well as IEEE 1588 transparent clock. Each port provides a native interface for Ethernet PHY devices. IEEE 802.1 Protocol Implementation Conformance Statement is available, specifying exact feature-set. The Ethernet TSN Switch IP provides support for key TSN features including IEEE 802.1Qbu and 802.3br Frame preemption, 802.1Qbv Time aware shaping, 802.1Qav Credit based shaping, 802.1Qci Per-Stream Filtering and Policing, and 802.1CB Frame replication and elimination for reliability. This enables the use of the IP in high speed time-critical applications.
This library is a production-quality, silicon-proven I/O library in TSMC 16nm technology. Supports multi-voltage GPIOs, capable of operating at 1.8V or 3.3V, dynamically selectable at the system level. Also included are various open-drain I/Os and hot plug detects capable of up to 5V operation. The library also includes a wide-variety of low-capacitance RF and analog ESD. There have operating ranges from 0 to 5V protection and support a wide range of high-performance interfaces including HDMI, LVDS, USB and wireless front-ends. Also included is a range of IEC 61000-4-2 system-level ESD protection that supports digital and analog I/O cells.
SDI Mapping IP Cores from intoPIX are designed for converting SDI interfaces to handle more complex and higher-resolution video streams, carrying JPEG XS or TICO RDD35 over existing SDI infrastructure. This innovative IP core allows 4K or 8K video to be transported efficiently over deployed SDI cabling systems, preserving the legacy equipment while dramatically enhancing its capabilities. The solution includes unique processing methods to remove forbidden codewords like EAV/SAV, allowing for up to 20% more compression efficiency. This not only saves bandwidth but also supports enhanced interoperability between different manufacturers' equipment globally. With SDI still being a widely used standard in broadcasting, these IP cores offer an elegant upgrade path to accommodate modern video standards without overhauling existing infrastructure, thereby saving significant cost and integration time.
Join the world's most advanced semiconductor IP marketplace!
It's free, and you'll get all the tools you need to discover IP, meet vendors and manage your IP workflow!
No credit card or payment details required.
Join the world's most advanced AI-powered semiconductor IP marketplace!
It's free, and you'll get all the tools you need to advertise and discover semiconductor IP, keep up-to-date with the latest semiconductor news and more!
Plus we'll send you our free weekly report on the semiconductor industry and the latest IP launches!