All IPs > Graphic & Peripheral > Peripheral Controller
Peripheral Controller semiconductor IPs play a crucial role in the seamless integration of peripherals with core processing units, enhancing the functionality and connectivity of various electronic devices. These IPs are designed to manage the communication between the central processing unit (CPU) and external devices such as keyboards, mice, printers, and other peripherals. By enabling efficient data transfer and control signals between components, Peripheral Controller IPs ensure that systems operate smoothly and efficiently.
A key application of Peripheral Controller semiconductor IPs is in consumer electronics, where they facilitate the connection of tablets, smartphones, and laptops to a multitude of accessories and networks. For example, Universal Serial Bus (USB) controllers, memory card readers, and audio interfaces are just a few of the peripherals that these IPs manage. This allows end-users to transfer data quickly, connect various devices seamlessly, and enjoy a more versatile computing experience.
In industrial and automotive sectors, Peripheral Controller IPs are vital for maintaining robust and reliable communication within complex electronic systems. They are used to interface with sensors, actuators, and other control systems, ensuring that necessary data is transmitted accurately and in real-time. This is critical for applications that require precise timing and synchronization, such as automated manufacturing systems, smart grids, and advanced driver-assistance systems (ADAS).
Moreover, the evolution of Internet of Things (IoT) devices has further expanded the importance of Peripheral Controller IPs. As IoT ecosystems continue to grow, the need for efficient data management and connectivity solutions becomes more prominent. Peripheral Controller IPs offer the adaptability and scalability required to support a wide array of IoT applications, ensuring that devices can connect, communicate, and interact with each other effectively in both personal and industrial settings.
Overview: The UCIe IP supports multiple protocols (CXL/PCIe/Streaming) to connect chiplets, reducing overall development cycles for IPs and SOCs. With flexible application and PHY interfaces, The UCIe IP is ideal for SOCs and chiplets. Key Features: Supports UCIe 1.0 Specification Supports CXL 2.0 and CXL 3.0 Specifications Supports PCIe Gen6 Specification Supports PCIe Gen5 and older versions of PCIe specifications Supports single and two-stack modules Supports CXL 2.0 68Byte flit mode with Fallback mode for PCIe non-flit mode transfers Supports CXL 3.0 256Byte flit mode Supports PCIe Gen6 flit mode Configurable up to 64-lane configuration for Advanced UCIe modules and 16 lanes for Standard UCIe modules Supports sideband and Mainband signals Supports Lane repair handling Data to clock point training and eye width sweep support from transmitter and receiver ends UCIe controller can work as Downstream or Upstream Main Band Lane reversal supported Dynamic sense of normal and redundant clock and data lines activation UCIe enumeration through DVSEC Error logging and reporting supported Error injection supported through Register programming RDI/FDI PM entry, Exit, Abort flows supported Dynamic clock gang at adapter supported Configurable Options: Maximum link width (x1, x2, x4, x8, x16) MPS (128B to 4KB) MRRS (128B to 4KB) Transmit retry/Receive buffer size Number of Virtual Channels L1 PM substate support Optional Capability Features can be Configured Number of PF/VFDMA configurable Options AXI MAX payload size Variations Multiple CPI Interfaces (Configurable) Cache/memory configurable Type 0/1/2 device configurable
iWave Global introduces the ARINC 818 Switch, a pivotal component in the management and routing of video data within avionics systems. Designed for applications that require efficient video data distribution and management, the switch is optimized for performance in environments with stringent data handling requirements. The switch's architecture supports a high level of bandwidth, allowing for the smooth routing of multiple video streams in real-time. Its design includes advanced features that ensure low-latency, error-free data transfer, integral to maintaining the integrity and reliability of video data in critical applications. Featuring robust interoperability characteristics, the ARINC 818 Switch easily integrates into existing systems, facilitating modular expansion and adaptability to new technological standards. It is indispensable for any aerospace project that involves complex video data management, providing a stable platform for video data routing and switching.
Our Expanded Serial Peripheral Interface (JESD251) Master controller features a low signal count and high data bandwidth, making it ideal for use in computing, automotive, Internet of Things, embedded systems, and mobile system processors. It connects multiple sources of Serial Peripheral Interface (xSPI) slave devices, including nonvolatile memories, graphics peripherals, networking peripherals, FPGAs, and sensor devices. Features • Compliant with JEDEC standard JESD251 expanded Serial Peripheral Interface (xSPI) for Non-Volatile Memory Devices, Version 1.0. • Supports a single master and multiple slaves per interface port. • Supports Single Data Rate and Double Data Rate. • Supports source synchronous clocking. • Supports data transfer rates up to: o 400MT/s (200MHz Clock) o 333MT/s (167MHz Clock) o 266MT/s (133MHz Clock) o 200MT/s (100MHz Clock) • Supports Deep Power Down (DPD) enter and exit commands. • Standard support for eight IO ports, with the possibility to increase IO ports based on system performance requirements. • Optional support for Data Strobe (DS) for writemasking. • Supports 1-bit wide SDR transfer. • Supports Profile 1.0 commands to manage nonvolatile memory devices. • Supports Profile 2.0 commands to read or writedata for any type of slave device. • Compatible with non-volatile memory arrays such as NOR Flash, NAND Flash, FRAM, and nvSRAM. • Compatible with volatile memory arrays such as SRAM, PSRAM, and DRAM. • Supports register-mapped input/output functions. • Supports programmable function devices such as FPGAs. Application • Consumer Electronics. • Defence & Aerospace. • Virtual Reality. • Augmented Reality. • Medical. • Biometrics (Fingerprints, etc). • Automotive Devices. • Sensor Devices. Deliverables • Verilog Source code. • User Guide. • IP Integration Guide. • Run and Synthesis script. • Encrypted Verification Testbench Environment. • Basic Test-suite.
Overview: The Expanded Serial Peripheral Interface (xSPI) Master/Slave controller offers high data throughput, low signal count, and limited backward compatibility with legacy SPI devices. It is designed to connect xSPI Master/Slave devices in computing, automotive, Internet of Things, embedded systems, and mobile processors to various peripherals such as non-volatile memories, graphics peripherals, networking devices, FPGAs, and sensor devices. Key Features: Compliance with JEDEC standard JESD251 eXpanded SPI for Non-Volatile Memory Devices, Version 1.0 Support for Single master and multiple slaves per interface port Single Data Rate (SDR) and Double Data Rate (DDR) support Source synchronous clocking Deep Power Down (DPD) enter and exit commands Eight IO ports in standard, expandable based on system requirements Optional Data Strobe (DS) for write masking bit wide SDR transfer support Profile 1.0 Commands for non-volatile memory device management Profile 2.0 Commands for read or write data for various slave devices Applications: Consumer Electronics Defense & Aerospace Virtual Reality Augmented Reality Medical Biometrics Automotive Devices Sensor Devices
Overview: PCIe Gen6 is a high-speed, layered protocol interconnect interface supporting speeds up to 64GT/s, featuring multi-lanes and links. The Transport, Data Link, and Physical layers specified in the PCIe specification are implemented, along with PIPE interface logic connecting to PHY and AXI Bridging logic for application connectivity. Specifications: Supports PCIe Gen 6 and Pipe 5.X Specifications Core supports Flit and non-Flit Mode Lane Configurations: X16, X8, X4, X2, X1 AXI MM and Streaming supported Supports Gen1 to Gen6 modes Data rate support of 2.5 GT/s, 5 GT/s, 8 GT/s, 16 GT/s, 32 GT/s, 64 GT/s PAM support when operating at 64GT/s Encoding/Decoding Support: 8b/10b, 128b/130b, 1b/1b Supports SerDes and non-SerDes architecture Optional DMA support as plugin module Support for alternate negotiation protocol Can operate as an endpoint or root complex Lane polarity control through register Lane de-skew supported Support for L1 states and L0P Support for SKP OS add/removal and SRIS mode No equalization support through configuration Deemphasis negotiation support at 5GT/s Supports EI inferences in all modes Supports PTM, OBFF, MSI, MSIX, Power management, and all message formats
The ARINC 818 Product Suite is a comprehensive solution designed for professionals working with advanced avionics systems. It provides a robust framework for implementing, testing, and simulating ARINC 818 systems. The product suite includes a variety of tools and resources tailored for the lifecycle of ARINC 818 systems, ensuring that clients can develop mission-critical systems with confidence. With a primary focus on performance and scalability, the ARINC 818 Product Suite is developed to cater to complex requirements and to seamlessly integrate within existing technology stacks. Users benefit from its extensive compatibility and the ability to manage high-speed data effectively, making it a vital asset for those working in aviation and defense sectors.
iWave Global delivers the Serial FPDP (sFPDP) solution, a high-bandwidth, low-latency serial communication protocol widely deployed in high-performance computing systems. This technology is optimized for applications that require rapid data transport, such as radar and high-definition video processing, making it a vital tool in industrial and defense sectors. By supporting high throughput rates, the Serial FPDP ensures timely and reliable data transmission, crucial for systems where time sensitivity and data integrity are paramount. The solution is particularly designed to address real-time data operations, ensuring that data handling meets rigorous industry standards. With its robust design, the Serial FPDP accommodates various network topologies, allowing for the flexible deployment of communication systems. This flexibility and performance make it highly applicable in environments where system designers demand unobstructed high-speed data transfer capabilities.
The KL530 represents a significant advancement in AI chip technology with a new NPU architecture optimized for both INT4 precision and transformer networks. This SOC is engineered to provide high processing efficiency and low power consumption, making it suitable for AIoT applications and other innovative scenarios. It features an ARM Cortex M4 CPU designed for low-power operation and offers a robust computational power of up to 1 TOPS. The chip's ISP enhances image quality, while its codec ensures efficient multimedia compression. Notably, the chip's cold start time is under 500 ms with an average power draw of less than 500 mW, establishing it as a leader in energy efficiency.
Silicon Creations crafts highly reliable LVDS interfaces designed to meet diverse application needs, going from bi-directional I/Os to specialized uni-directional configurations. Spanning process compatibilities from 90nm CMOS to advanced 7nm FinFET, these interfaces are a cornerstone for high-speed data communication systems, thriving particularly in video data transmission and chip-to-chip communications. Supporting robust data rates over multiple channels, the LVDS Interfaces guarantee flexible programmability and protocol compatibility with standards such as FPD-Link and Camera-Link. They capitalize on proven PLL and CDR architectures for superior signal integrity and error-free data transfers. Operating efficiently in various technology nodes, they remain highly effective across collaborative chipset environments. The interfaces are fortified with adaptable features like dynamic phase alignment to stabilize data sequences and on-die termination options for superior signal integrity. Their proven record places them as a critical enabler in applications where consistent high-speed data transfer is paramount, demonstrating Silicon Creations’ prowess in delivering industry-leading communication solutions.
eSi-Connect offers an extensive suite of AMBA-compliant peripheral IPs designed to streamline SoC integration. This suite encompasses versatile memory controllers, standard off-chip interface support, and essential control functions. Its configurability and compatibility with low-level software drivers make it suitable for real-time deployment in complex system architectures, promoting reliable connectivity across various applications.
Our Expanded Serial Peripheral Interface (JESD251) Slave controller offers high data throughput, low signal count, and limited backward compatibility with legacy Serial Peripheral Interface (SPI) devices. It is used to connect xSPI Master devices in computing, automotive, Internet of Things, embedded systems, and mobile system processors to non-volatile memories, graphics peripherals, networking peripherals, FPGAs, and sensor devices. Features • Compliant with JEDEC standard JESD251 expanded Serial Peripheral Interface (xSPI) for Non-Volatile Memory Devices, Version 1.0. • Supports Single Data Rate (SDR) and Double Data Rate (DDR). • Supports source synchronous clocking. • Supports data transfer rates up to: o 400MT/s (200MHz Clock) o 333MT/s (167MHz Clock) o 266MT/s (133MHz Clock) o 200MT/s (100MHz Clock) • Supports Deep Power Down (DPD) enter and exit commands. • Standard support for eight IO ports, with the possibility to increase IO ports based on system performance requirements. • Optional support for Data Strobe (DS) for timing reference. • Supports 1-bit wide SDR transfer. • Supports Profile 1.0 commands to manage nonvolatile memory devices. • Supports Profile 2.0 commands for reading or writing data for any type of slave device. • Compatible with non-volatile memory arrays such as NOR Flash, NAND Flash, FRAM, and nvSRAM. • Compatible with volatile memory arrays such as SRAM, PSRAM, and DRAM. • Supports register-mapped input/output functions. • Supports programmable function devices such as FPGAs. Application • Consumer Electronics. • Defence & Aerospace. • Virtual Reality. • Augmented Reality. • Medical. • Biometrics (Fingerprints, etc). • Automotive Devices. • Sensor Devices. Deliverables • Verilog Source code. • User Guide. • IP Integration Guide. • Run and Synthesis script. • Encrypted Verification Testbench Environment. • Basic Test-suite.
Overview: The Multi-Protocol Accelerator IP is a versatile technology designed to support low latency and high bandwidth accelerators for efficient CPU-to-device and CPU-to-memory communication. It also enables switching for fan-out to connect more devices, memory pooling for increased memory utilization efficiency, and provides memory capacity with support for hot-plug, security enhancements, persistent memory support, and memory error reporting. Key Features: CXL 3.0 Support: Compliant with CXL spec V3.X/V2.X PCIe Compatibility: Supports PCIe spec 6.0/5.0 CPI Interface: Support for CPI Interface AXI Interface: Configurable AXI master, AXI slave Bus Support: PIPE/FLEX bus, Lane x1,x2,x4,x8,x16 Protocol Support: Gen3, Gen4, Gen5 & Gen6, Fallback Mode Register Checks: Configuration and Memory Mapped registers Dual Mode: Supports Dual Mode operation Transfer Support: HBR/PBR & LOpt Transfers, Standard Cache and Mem Transfers CXL Support: Can function as both CXL host and device Data Transfer: Supports Standard IO, 68Byte Flit, and 256Byte Flit Transfers FlexBus Features: FlexBus Link Features, ARB/MUX, ARB/MUX Bypass Optimization: Latency Optimization, Credit Return Forcing, Empty Flits (Latency Optimized) Power Management: Supports Power Management features Enhancements: CXL IDE, RAS Features, Poison & Viral Handling, MLD/SLD Testing: Compliance Testing and Error Scenarios support
The aLFA-C is a programmable interfacing ASIC designed specifically for space-borne infrared ROICs and other image sensors. It significantly reduces the need for traditional front-end electronics by integrating essential functions onto a single chip. A standout feature includes its capability to operate with a single unregulated supply, aided by on-chip LDOs and regulators. aLFA-C offers extensive programmability, including a fully programmable sequencer for ROIC interfacing, and supports various digital output configurations such as CMOS, LVDS, or CML. It includes SPI interfaces for seamless image sensor integration and features analog acquisition over multiple channels, with high precision 16-bit ADCs, allowing parallel or interleave configuration for flexible data handling speeds. This ASIC is equipped with several measurement capabilities for resistance, voltage, and current, and provides programmable voltage and current sources. With resilience against TID, SEU, and SEL, it's highly reliable in harsh space environments. It's operational over a wide temperature range from 35K to 330K, suitable for varied applications in extreme conditions.
aiSim 5 is at the forefront of automotive simulation, providing a comprehensive environment for the validation and verification of ADAS and AD systems. This innovative simulator integrates AI and physics-based digital twin technology, creating an adaptable and realistic testing ground that accommodates diverse and challenging environmental scenarios. It leverages advanced sensor simulation capabilities to reproduce high fidelity data critical for testing and development. The simulator's architecture is designed for modularity, allowing seamless integration with existing systems through C++ and Python APIs. This facilitates a wide range of testing scenarios while ensuring compliance with ISO 26262 ASIL-D standards, which is a critical requirement for automotive industry trust. aiSim 5 offers developers significant improvements in testing efficiency, allowing for runtime performance adjustments with deterministic outcomes. Some key features of aiSim 5 include the ability to simulate varied weather conditions with real-time adaptable environments, a substantial library of 3D assets, and built-in domain randomization features through aiFab for synthetic data generation. Additionally, its innovative rendering engine, aiSim AIR, enhances simulation realism while optimizing computational resources. This tool serves as an ideal solution for companies looking to push the boundaries of ADAS and AD testing and deployment.
The HOTLink II Product Suite is designed to facilitate high-speed connectivity and data transfer in demanding environments. This suite of products offers robust solutions for those needing reliable and fast data links, catering to industries where performance and precision are crucial. As part of Great River Technology's offerings, HOTLink II stands out by providing comprehensive support throughout product lifecycles and ensuring compatibility with various systems. With HOTLink II, users can expect exceptional levels of performance and reliability thanks to its advanced design, which is geared towards meeting the rigorous demands of aerospace and defense applications. Whether implementing new systems or upgrading existing infrastructures, the HOTLink II Product Suite provides the versatility and capability needed to meet diverse clients' needs. The suite is particularly beneficial for engineers requiring high-performance link solutions that integrate seamlessly within larger systems, enhancing operational effectiveness and efficiency. It includes all the necessary tools to ensure a smooth deployment process while minimizing potential downtime associated with new technology integration.
The ARINC 818-3 IP Core from iWave Global represents an advancement in avionics video interface technology, designed for high-speed and high-fidelity video data transmission. This IP core addresses the needs of modern aerospace systems that require robust video communication links both for military and commercial use. It supports a wide array of enhancements over previous generations, including increased bandwidth and improved signal integrity. This ensures that the ARINC 818-3 IP Core can handle the demands of next-generation avionic systems seamlessly, supporting advanced video processing and display systems. The core's design prioritizes modularity and scalability, allowing for easy integration and expansion to meet evolving system requirements. It is positioned as an essential tool for aviation applications demanding high reliability and accuracy in video data handling and display solutions, making it indispensable for new and retrofitted aerospace projects.
The Mixed-Signal CODEC offered by Archband Labs integrates advanced analog and digital audio processing to deliver superior sound quality. Designed for a variety of applications such as portable audio devices, automotive systems, and entertainment systems, this CODEC provides efficiency and high performance. With cutting-edge technologies, it handles complex signal conversions with minimal power consumption. This CODEC supports numerous interface standards, making it a versatile component in numerous audio architectures. It's engineered to offer precise sound reproduction and maintains audio fidelity across all use cases. The integrated components within the CODEC streamline design processes and reduce the complexity of audio system implementations. Furthermore, the Mixed-Signal CODEC incorporates features that support high-resolution audio, ensuring compatibility with high-definition sound systems. It's an ideal choice for engineers looking for a reliable and comprehensive audio processing solution.
MajEQ Pro is an advanced equalizer tailored for professional audio applications, allowing both static and dynamic EQ adjustments to match specific frequency response targets. It handles tasks such as venue correction or adapting to atmospheric changes at live events. This tool encompasses features including high and low-pass filters with variable slopes, tone controls, and unique filter designs such as Bell or Presence filters with customizable gain, frequency, and Q.
Trifecta-GPU design offers an exceptional computational power utilizing the NVIDIA RTX A2000 embedded GPU. With a focus on modular test and measurement, and electronic warfare markets, this GPU is capable of delivering 8.3 FP32 TFLOPS compute performance. It is tailored for advanced signal processing and machine learning, making it indispensable for modern, software-defined signal processing applications. This GPU is a part of the COTS PXIe/CPCIe modular family, known for its flexibility and ease of use. The NVIDIA GPU integration means users can expect robust performance for AI inference applications, facilitating quick deployment in various scenarios requiring advanced data processing. Incorporating the latest in graphical performance, the Trifecta-GPU supports a broad range of applications, from high-end computing tasks to graphics-intensive processes. It is particularly beneficial for those needing a reliable and powerful GPU for modular T&M and EW projects.
Silicon Creations' Bi-Directional LVDS Interfaces are engineered to offer high-speed data transmission with exceptional signal integrity. These interfaces are designed to complement FPGA-to-ASIC conversions and include broad compatibility with industry standards like FPD-Link and Camera-Link. Operating efficiently over processes from 90nm to 12nm, the LVDS interfaces achieve data rates exceeding 3Gbps using advanced phase alignment techniques. A standout feature of this IP is its capability to handle independent LVCMOS input and output functions while maintaining high compatibility with TIA/EIA644A standards. The bi-directional nature allows for seamless data flow in chip-to-chip communications, essential for modern integrated circuits requiring high data throughput. The design is further refined with trimmable on-die termination, enhancing signal integrity during operations. The LVDS interfaces are versatile and highly programmable, meeting bespoke application needs with ease. The interfaces ensure robust error rate performance across varying phase selections, making them ideal for video data applications, controllers, and other high-speed data interfaces where reliability and performance are paramount.
The Aeonic Integrated Droop Response System is a groundbreaking approach to managing voltage droop in complex IC environments. This solution combines fast multi-threshold detection with churn-key integration of fine-grained dynamic voltage and frequency scaling capabilities. It offers advanced features such as tight coupling of droop detection and response, leading to the fastest commercial adaptation times that can significantly reduce margin requirements and power usage. The system’s observability features provide valuable data for silicon health assessments and lifecycle management. Process portability ensures scalability across different technology nodes, making the solution versatile for use in various sophisticated systems. This system is crucial for managing droop-induced challenges, and its integration with current architectures leads to enhanced system power and performance efficiency.
The APB4 GPIO core from Roa Logic is a fully parameterized solution designed to provide a customizable number of general-purpose, bidirectional I/O pins. This core enables developers to define the I/O behavior precisely, adapting to a plethora of configurations to meet specific project requirements. It is essential for applications that require extensive interfacing capabilities, ensuring streamlined connectivity across multiple components. The GPIO core supports a range of operational modes, providing the flexibility to handle complex I/O operations. With capabilities like programmable drive strength and individual pin configuration, it offers a high degree of customization that can be tailored to precise application needs. Roa Logic’s offering enhances design functionality and accelerates development timelines by facilitating easy integration and application-specific optimization. This component serves as a cornerstone for designs requiring robust peripheral interaction, catering to both industrial projects and educational purposes. Its adaptability and ease of integration ensure it's an invaluable component in modern electronics design, adhering to the high standards expected in today's interconnected environments.
Silicon Library Inc. offers a high-quality DisplayPort/eDP IP that supports seamless transmission of audio and video data for modern display standards. Engineered for compatibility with DP/eDP 1.4 standards, this IP is geared toward contemporary computing and media devices requiring sharp and clear image displays. The DisplayPort/eDP interface is crucial for devices like monitors, laptops, and all-in-one PCs. It provides a robust link for transmitting high-definition content, capable of managing complex video signals with multiple streams efficiently. The IP is designed to support high-bandwidth communication, enabling it to handle resolutions required for newer display technologies, including 4K and 8K displays. Optimized for power and performance, the DisplayPort/eDP IP integrates features like adaptive sync, dynamic refresh rates, and multi-monitor support. Its low-power footprint and efficiency in managing resources make it suitable for portable and high-performance devices where display quality is paramount.
The DB9000AXI Display Controller is engineered to interface seamlessly with Frame Buffer Memory via the AMBA AXI protocol, offering support for a wide range of display resolutions from basic QVGA up to advanced 8K panels. Besides baseline display capabilities, advanced versions feature enhanced processing attributes such as multiple overlay windows, hardware cursor functions, and high dynamic range (HDR) imaging. With features like Color Space Conversion and programmable resolution settings, this IP core meets diverse display demands across numerous applications.
The logiCVC-ML is an advanced display controller that supports resolutions up to 2048x2048, tailored for TFT LCD displays. Optimized for AMD's Zynq 7000 AP SoC and FPGAs, this IP core is equipped with software drivers compatible with Linux, Android, and Windows Embedded Compact 7. This versatility ensures the logiCVC-ML can be implemented across a wide array of applications demanding high-resolution display capabilities. With a strong focus on integrating with existing systems, the logiCVC-ML offers multilayer video capabilities, making it ideal for complex display needs in various industries. Its support extends beyond simple display output, accommodating sophisticated graphics operations that enhance user experiences across diverse platforms. The IP core's efficient use of resources ensures minimal impact on overall system performance, allowing developers to allocate resources to other critical functions. The logiCVC-ML thus represents a blend of high performance and resource efficiency, making it a valuable component in any high-resolution display application.
The Camera PHY Interface for Advanced Processes by CURIOUS Corporation is designed to meet the demanding needs of modern imaging technology. This interface enables high-speed data transmission, catering to advanced process nodes required to support contemporary camera sensors. The interface efficiently handles various protocols, ensuring seamless integration with cutting-edge camera technologies. This makes it an ideal choice for applications where rapid data transfer and high-resolution image processing are necessary. The interface is engineered with sophisticated technology that provides reliable performance across multiple camera systems. Known for its adaptability, the Camera PHY Interface caters to diverse application needs by supporting various camera types and integration scenarios. This versatility plays a crucial role in fulfilling the requirements of high-performance imaging devices, ensuring superior camera functionality. Aside from its robust design, the interface also includes advanced features to support high-speed operations, making it capable of handling complex imaging tasks with ease. This positions the Camera PHY Interface as a pivotal component in the assembly of sophisticated and dynamic imaging systems, ensuring optimal functionality and performance.
Analog Bits provides robust I/O solutions that are essential for the efficient transfer of signals between semiconductor devices and their external environment. These input/output interfaces are designed to meet the most demanding performance criteria, ensuring fast data rates and minimal signal distortion. Their I/O IP solutions can accommodate a variety of protocols, including high-speed digital interfaces and analog conversions, offering versatility and support for applications such as networking, data processing, and consumer electronics. By optimizing the signal integrity and electromagnetic compatibility, these I/Os enhance the overall system performance. Equipped with advanced features for low power consumption, these I/Os contribute to reducing the overall energy footprint of semiconductor devices, making them ideal for battery-operated devices and environmentally sensitive applications. Analog Bits' I/Os are comprehensively integrated to function seamlessly within mixed-signal environments, further broadening their application range.
Certus Semiconductor's Analog I/O offerings bring ultra-low capacitance and robust ESD protection to the forefront. These solutions are crafted to handle extreme voltage conditions while securing signal integrity by minimizing impedance mismatches. Key features include integrated ESD and power clamps, support for broad RF frequencies, and the ability to handle signal swings below ground. Ideal for high-speed RF applications, these Analog I/Os provide superior protection and performance, aligning with the most demanding circuit requirements.
Nextera Video's NMOS Control Platform is a vital component for ensuring seamless interoperation of SMPTE ST 2110 devices within multi-vendor IP networks. Developed by the Advanced Media Workflow Association (AMWA) and specified by the Joint Taskforce on Networked Media (JT-NM), the NMOS platform simplifies the management of media systems over IP, enabling plug-and-play interoperability in complex environments. This platform allows for automatic discovery and registration of devices, connection management, and resource labeling, which is crucial for effective system monitoring and control. Key features encompass a broad range of functionalities, including IP equivalent of GPIO events, real-time configuration of audio channels, and comprehensive system parameter management. These capabilities make it indispensable for operations demanding high-quality media routing and flexibility. NMOS is not only a means of efficient configuration but also enhances the security of media communications through integration with HTTPS and TLS standards. This ensures that only authorized users have access, thereby strengthening the integrity of media operations on the network. As a JT-NM tested solution, it guarantees adherence to industry standards, contributing to its widespread acceptance amongst broadcasters and media producers.
Himax's display drivers are crafted for expansive displays found in televisions, monitors, and other large-sized electronic panels. These drivers are engineered to provide accurate color representation and clarity, optimizing the viewer experience. With their high integration levels, Himax's display drivers are designed to support the latest trends in consumer electronics, ensuring seamless interfaces across various devices. The architecture of these drivers facilitates enhanced performance for high-definition and ultra-high-definition displays. By leveraging advanced algorithms, these components are capable of reducing motion blur and enhancing the overall visual impact. Designed for energy efficiency, they cater to the growing demands of eco-friendly electronic solutions. Adapting to fast-evolving market trends, these drivers address the need for improved refresh rates and resolution. The design focuses on maintaining image integrity while supporting growing data transmission requirements. Himax ensures that these products meet the rigorous standards expected in today’s dynamic technology ecosystem.
Mobix Labs' EMI Flex Filters are designed to address electromagnetic interference challenges in advanced technologies, ensuring smooth data transmission without disruptions. These filters are characterized by their ultra-thin and flexible form factor, which allows them to fit complex surfaces and enclosures, maintaining signal clarity and high-speed data transmission even in demanding environments. With the capability to filter up to 50 GHz, these filters are ideal for 5G and radar applications, ensuring long-term reliability across various industries. The EMI Flex Filters offer exceptional attenuation, catering to stringent military and aerospace standards. They provide customizable form factors to suit specific device requirements, ensuring versatility and adaptability in integration. Their durable design makes them suitable for applications that involve harsh conditions, enhancing their broad use-case potential in military, aerospace, telecommunication, IoT, medical, and automotive sectors. These filters emphasize performance by achieving minimal signal loss, which is critical for high-speed data applications. Military-grade performance and custom engineering support enable tailored solutions to meet precise specifications, reinforcing Mobix Labs' leadership in advanced EMI filtering technology.
Bruco Integrated Circuits offers a cutting-edge WiFi6, LTE, and 5G Front-End Module that provides unmatched wireless connectivity for modern communication needs. This module is designed to support the latest wireless communication standards, ensuring seamless connectivity for high-speed data transfer and communication applications. With enhanced signal amplification and filtering, this module excels in delivering clear, strong signals across various platforms, from personal devices to expansive network infrastructures. The module integrates multi-band capabilities, allowing it to operate effectively in different frequency bands, which is crucial for supporting technologies like WiFi6, LTE, and 5G. This versatility enables high-speed internet access, improved network capacity, and reduced latency, critically demanded by today’s data-intensive applications. Additionally, it is engineered for low power operation, maximizing efficiency without compromising performance. Notably, the front-end module is equipped with advanced features to mitigate signal interference and enhance signal-to-noise ratios, essential for maintaining excellent connectivity stability. Its design also ensures compatibility with existing communication networks, providing an easy upgrade path for infrastructure seeking to adopt newer, faster communication standards.
The Capacitive Proximity Switch by Microdul provides an advanced solution for energy-efficient touch sensing. Engineered to reduce system power consumption, this switch is adept at recognizing proximity and touch inputs with a high level of accuracy. It is suitable for integration in devices requiring responsive touch capabilities without incurring significant energy costs. Designed for versatility, the switch supports diverse applications ranging from individual keys to entire keypads and sliders. With its low-power design, it serves as a perfect component for electronics that aim to minimize energy consumption without sacrificing responsiveness. These capacitive sensors are particularly beneficial in modern touch interfaces, contributing to prolonged device operation on limited power budgets. This switch not only improves user experience by offering sensitive and reliable touch detection but also plays a critical role in the management of power use in portable and fixed installations. The energy efficiency of the capacitive switch facilitates the development of sustainable electronics, which are increasingly essential in today's environmentally conscious market.
The ARINC 664 P7 IP Core by iWave Global is at the forefront of aviation network solutions, offering an advanced platform for Ethernet-based communication in aerospace systems. Known for adhering to stringent industry standards, this IP core provides reliable and efficient communication protocols essential for avionics Ethernet networks. It effectively manages high-speed data across network infrastructures, paving the way for streamlined operations within aircraft systems. The core supports features essential for critical networked systems, such as bandwidth allocation, prioritization of data flows, and quality of service mechanisms. Ideal for enhanced networking capabilities in aircraft, the ARINC 664 P7 IP Core ensures data communication integrity, which is essential for the safety-critical operations found in modern aviation environments. This core is crucial for developers aiming to create sophisticated onboard systems that require precise and dependable data exchange mechanisms.
To augment their diverse microcontroller IP lineup, Syntill8 provides an array of peripheral interface IP cores designed to integrate seamlessly with their 8051 microcontrollers. The suite includes a Two-Wire Slave Interface (M2WIS) and a Four-Wire Slave Interface (M4WIS), which complement the integral interfaces within the microcontroller cores. Additionally, the UDPMAC core caters to networking needs, providing a robust 1-Gigabit UDP/Ethernet MAC solution. These peripheral integrations enable comprehensive connectivity options for diverse applications.
The ARINC 818-2 IP Core by iWave Global is engineered to support the high-speed video interface standard used in aerospace applications. This IP core signifies a leap in the integration of advanced video transmission protocols with existing avionics architectures. It is tailored for applications that demand highly reliable and efficient video data communications. Focusing on seamless compatibility, the ARINC 818-2 IP Core integrates easily into various platforms, ensuring minimal modifications and reduced time-to-market for development. This core supports high-speed data transfer rates, providing robust solutions for real-time video streaming and data transfer. Ideal for systems requiring precise video data handling, the ARINC 818-2 IP Core guarantees data integrity and synchronization across all transmission stages. Its versatile design allows for broad implementation across military and commercial aviation sectors, where data reliability and transfer efficiency are paramount.
The ADNESC ARINC 664 End System Controller is meticulously developed to comply with the RTCA DO-254 DAL A standards, ensuring its airworthiness for next-generation avionics systems. This controller is built using target device-independent VHDL code, allowing flexibility and broad adoption across various platforms. Engineered for high-performance, the ADNESC supports high-speed multi-host interface connections of up to 400 Mbit/s, making it an essential component for modern avionic data networks. Its embedded SRAM facilitates rapid data processing, crucial for real-time operations in complex aerospace systems. This controller represents a leap forward in avionics technology, offering reliability and adaptability. It caters to aerospace industries demanding rigorous compliance with safety and performance standards, driving innovation in airborne data systems.
Catalyst-GPU represents a cost-effective and powerful graphics solution for the PXIe/CPCIe platform. Equipped with NVIDIA Quadro T600 and T1000 GPUs, this module excels in providing enhanced graphics and computing acceleration required by modern signal processing and AI applications. One of the standout features of Catalyst-GPU is its ease of programming and high compute capabilities. It meets the requirements of both Modular Test and Measurement (T&M) and Electronic Warfare (EW) sectors, offering significant performance improvements at reduced operational costs. Built as a part of the Catalyst family, this module allows access to advanced graphics capabilities of NVIDIA technology, paving the way for efficient data processing and accelerated computational tasks. The Catalyst-GPU sets itself apart as a robust choice for users needing reliable high-performance graphics within a modular system framework.
The 28GHz Pin Diode SP4T Switch is designed to provide high isolation and low insertion loss for RF applications. Operating from 24 to 32GHz, this switch exhibits a loss of 0.8dB while providing isolation greater than 23dB. This switch is engineered using compact design principles suitable for integration into microwave systems requiring multiple signal paths.
The Flat Panel Display Interface for Advanced Processes is a highly adaptable interface solution tailored for modern display technologies. It supports multiple data protocols, ensuring seamless communication between the main processor and display units. This interface product optimizes data handling capacities, making it ideal for applications requiring high-speed data exchange and complex display management. Designed for advanced processes, this display interface is highly efficient, reducing latency and improving overall performance. It supports various display formats, allowing for the integration of cutting-edge display technologies into high-functioning devices. Its comprehensive design is intended to boost the performance of advanced electronic display systems, making it a vital component in the development of high-resolution display products. The interface's adaptable configuration supports a range of operating environments and applications, facilitating efficient implementation across diverse platforms. Its robust construction ensures a long lifespan, contributing to the development of sustainable and reliable electronic solutions.
Akeana's Processor System IP offers a comprehensive set of system IP blocks designed to enhance the performance and efficiency of processor systems. This product line includes a variety of sophisticated components such as Compute Coherence Blocks (CCB), coherent and non-coherent interconnect fabrics, and advanced interrupt architectures, essential for building scalable and reliable multi-core systems. Notably, the Compute Coherence Block is pivotal in facilitating coherent clusters of cores through a directory-based protocol, ensuring caches are efficiently shared among processors. This, combined with the company's adherence to AMBA specifications for interconnect fabrics, allows easy integration into existing systems, providing flexible and robust solutions for handling complex data management tasks. The IP supports a wide array of functions including the IOMMU and interrupt controllers, critical for ensuring seamless device communication and control in diversified processing environments. Akeana's in-depth understanding of processing systems enables customers to configure and deploy highly customizable solutions, achieving optimal performance through tailored IP configurations suited to their specific application needs.
The DisplayPort 1.1a Transmitter offers a fully-compliant solution for digital video and audio transmission, supporting resolutions of considerable quality. This transmitter is essential for developers integrating high-definition multimedia interface technologies into a diverse range of consumer electronics. Its design enables reliable video and audio streaming by incorporating HDCP content protection compliance, which is crucial for safeguarding copyrighted content during transmission. This protection is an integral feature for professional broadcast environments and consumer applications. Beyond its secure transmission capabilities, this transmitter supports large data streams with minimal latency, thereby improving the quality of interactive displays and ensuring that video synchronization is maintained. This characteristic is increasingly important as high-definition multimedia becomes the norm across computing devices.
IMG DXS GPU is engineered to meet the needs of automotive and industrial applications where functional safety is paramount. Built on efficient PowerVR architecture, it ensures high-performance graphics rendering with a focus on reduced power consumption. The DXS technology supports comprehensive safety suites, catering to ADAS and digital cockpit applications, thereby addressing stringent automotive safety standards.
The iCan System® offers a comprehensive modular solution for In-Flight Entertainment (IFE) and Cabin Management Systems (CMS). Designed to integrate seamlessly with existing aircraft networks, it supports multiple communication needs, enhancing both cabin management and passenger experience. Its modularity allows for flexible configuration, tailoring to specific aircraft requirements.
The Display Interface solutions provided by InPsytech encompass high-performance interface technologies like DP 1.4, eDP 1.3, HDMI 1.4/2.0, and LVDS/OpenLDI PHYs. These interfaces are designed to support high-definition multimedia data exchange, critical for modern display applications. Featuring technologies such as MIPI D-PHY TX PHY and associated DSI controllers, these interfaces offer enhanced data rates and robust signal processing capabilities. The MIPI C/D Combo TX PHY and DSI controller cater to digital display needs, ensuring seamless integration and intuitive user interactions in devices like flat-panel displays and monitors. InPsytech's display solutions emphasize both performance and energy efficiency, making them highly suitable for battery-operated devices requiring prolonged usage times. By focusing on minimal energy usage without sacrificing display quality, these interfaces support the development of innovative and competitive multimedia products in a dynamic market.
Mobix Labs' EMI Filter Modules integrate high-performance electromagnetic interference filtering in compact modules. These components streamline integration at the system level, reducing assembly complexity and enhancing system stability. With advanced filtering technology, these modules offer precise attenuation of unwanted interference, ensuring clean signals across a wide range of frequencies up to 50 GHz, necessary for modern high-speed telecommunications and military applications. Designed to fit into varied systems, these plug-and-play modules simplify and accelerate the integration process. They are built with rugged durability, capable of withstanding extreme environments, including significant temperature shifts, vibrations, and shocks. Such robustness makes them ideal for critical military applications, aerospace systems, emerging 5G networks, IoT devices, and sensitive medical equipment. Customization options allow these modules to be tailored to specific system needs, reinforcing Mobix Labs’ credentials in delivering industry-compliant, resilient solutions. The modules support secure, noise-free operation, making them indispensable for applications where signal integrity and reliability are priorities.
Silhouse is a cutting-edge machine vision solution designed to accelerate the implementation of image processing applications across various industries. Its state-of-the-art technology provides rapid image analysis and processing capabilities, enabling users to harness machine learning algorithms for enhanced visual data interpretation. From improving quality control processes in manufacturing to enabling automation in logistics, Silhouse is versatile and scalable, making it ideal for diverse industrial applications. The platform's ability to integrate with existing systems allows for seamless adoption and instant benefits, thereby reducing deployment times and costs normally associated with traditional vision systems. The adaptability and precision of Silhouse empower users to conduct complex image-based analysis tasks effectively, fostering innovation in sectors where visual data is critical. Its robust design ensures reliability and accuracy, establishing it as a valuable resource in industrial settings demanding high-speed, quality image processing.
The CXM GPU is designed for utmost efficiency and versatility, catering to a range of devices from wearable technology to smart home systems. Known for its compact design and low power consumption, it still provides significant computing power and rendering capabilities. This makes it a perfect fit for industrial applications where space and energy efficiency are crucial.
Besso PCIe Diagnostics is designed to offer deep insights into the operation of PCIe systems. This software solution equips users with an advanced diagnostic toolset, enabling thorough analysis and debugging of system performance. Through features like EyeScope, BER monitors, and comprehensive logic analyzers, Besso allows engineers to gain unparalleled visibility into PCIe link activity without needing expensive laboratory equipment. The intuitive dashboard interface of Besso simplifies the process of remotely monitoring and analyzing PCIe systems. Capable of operating in both laboratory and field environments, it enhances server, networking, and storage equipment by providing detailed data on link transitions, errors, and overall system states. Besso is especially useful in systematically breaking down complex networks, offering diagnostics that aid in swift identification and rectification of issues that might not be immediately visible. The software's bifurcation mode further extends its utility, letting users test and monitor multiple link segments simultaneously. This makes Besso an invaluable tool for maintaining high-performance and reliable operation across extensive PCIe infrastructures, thereby facilitating efficient problem-solving and system optimization.
EASii IC's CoaXPress IP stands out as a global leader in high-speed imaging data transmission used across professional and industrial imaging applications such as machine vision, medical imaging, and broadcasting. This IP leverages the simplicity of coaxial cabling combined with high-speed serial data transfer capabilities. CoaXPress provides a high-bandwidth, low-cost interface solution using coaxial cables for video acquisition peripherals. It supports high-speed data streams from multiple cameras with impressive GenICam compliance, endorsing a unified software interface for diverse camera types. EASii IC’s CoaXPress Device and Host IP cores are engineered to accommodate the latest standards, offering unparalleled integration for embedded systems. Designed with flexibility, CoaXPress IP includes dynamic device and link management, allowing it to seamlessly operate across multiple system configurations and supporting bidirectional, low-latency, high-precision communications. This versatility ensures its efficacy for large-scale, multistream video processing, capturing, and transmission requirements.
Join the world's most advanced semiconductor IP marketplace!
It's free, and you'll get all the tools you need to discover IP, meet vendors and manage your IP workflow!
No credit card or payment details required.
Join the world's most advanced AI-powered semiconductor IP marketplace!
It's free, and you'll get all the tools you need to advertise and discover semiconductor IP, keep up-to-date with the latest semiconductor news and more!
Plus we'll send you our free weekly report on the semiconductor industry and the latest IP launches!