Find IP Sell IP AI Assistant Chip Talk Chip Videos About Us
Log In

All IPs > Automotive > CAN

Automotive CAN Semiconductor IP Solutions

The automotive industry relies heavily on effective communication networks to ensure the seamless operation of various vehicle systems. At the heart of these networks is the Controller Area Network (CAN), a robust vehicle bus standard that allows microcontrollers and devices to communicate with each other without a host computer. Our Automotive CAN semiconductor IP category offers specialized solutions that meet these specific communication needs, ensuring reliable and efficient data exchange in automotive environments.

CAN semiconductor IPs are essential for developing advanced driver-assistance systems (ADAS), powertrain operations, infotainment systems, and other critical automotive functions. These IPs provide designers with highly optimized core architectures that support high-speed, real-time data transfer with minimal latency and error rates. The IPs are designed to be adaptable, supporting a myriad of applications ranging from electric vehicle management systems to complex networked automotive functions.

In this category, you'll find a wide assortment of semiconductor IPs tailored for various CAN protocols, including CAN FD (Flexible Data-rate) and classical CAN networks. These IPs support features such as error handling, message prioritization, and arbitration, which are crucial for maintaining the system's integrity and operational efficiency. With advancements in automotive technology, CAN semiconductor IPs are continuously evolving to support higher data rates and enhanced security features to safeguard vehicle communication networks.

Whether you are developing new automotive systems or upgrading existing networks, our CAN semiconductor IP offerings provide the necessary tools to enhance functionality and performance. By leveraging our robust IP solutions, automotive manufacturers can achieve higher reliability and efficiency in vehicle communication, paving the way for smarter and more connected vehicles. Explore our portfolio to find the semiconductor IPs that best fit your automotive project needs.

All semiconductor IP

ADAS and Autonomous Driving

KPIT Technologies leads in the development of Advanced Driver Assistance Systems (ADAS) and autonomous driving solutions, building systems that enhance vehicle safety, comfort, and performance. These innovations extend across various aspects of vehicle automation, leveraging AI-driven data analytics and sensor fusion technologies to enable intelligent driving functions. KPIT's ADAS offerings are designed to assist drivers in complex traffic situations, reduce collision risks, and enhance the overall driving experience through adaptive, high-precision control systems. Central to KPIT's efforts in this space is the integration of state-of-the-art technologies, including machine learning algorithms and real-time data processing capabilities. These complement their extensive industry knowledge to deliver robust, scalable, and interoperable solutions that adhere to the latest automotive safety standards. Emphasizing modular design, KPIT ensures that automakers can easily integrate these technologies into existing and new vehicle platforms. KPIT's expertise extends to collaborating with automakers on developing sophisticated autonomous systems that promise to redefine the future of personal and commercial mobility. By partnering with leading automotive companies, KPIT continues to pioneer advancements in vehicular autonomy, ensuring greater safety and efficiency on roads worldwide.

KPIT Technologies
AI Processor, CAN, CAN-FD, Safe Ethernet
View Details

Metis AIPU M.2 Accelerator Module

The Metis AIPU M.2 Accelerator Module by Axelera AI is a compact and powerful solution designed for AI inference at the edge. This module delivers remarkable performance, comparable to that of a PCIe card, all while fitting into the streamlined M.2 form factor. Ideal for demanding AI applications that require substantial computational power, the module enhances processing efficiency while minimizing power usage. With its robust infrastructure, it is geared toward integrating into applications that demand high throughput and low latency, making it a perfect fit for intelligent vision applications and real-time analytics. The AIPU, or Artificial Intelligence Processing Unit, at the core of this module provides industry-leading performance by offloading AI workloads from traditional CPU or GPU setups, allowing for dedicated AI computation that is faster and more energy-efficient. This not only boosts the capabilities of the host systems but also drastically reduces the overall energy consumption. The module supports a wide range of AI applications, from facial recognition and security systems to advanced industrial automation processes. By utilizing Axelera AI’s innovative software solutions, such as the Voyager SDK, the Metis AIPU M.2 Accelerator Module enables seamless integration and full utilization of AI models and applications. The SDK offers enhancements like compatibility with various industry tools and frameworks, thus ensuring a smooth deployment process and quick time-to-market for advanced AI systems. This product represents Axelera AI’s commitment to revolutionizing edge computing with streamlined, effective AI acceleration solutions.

Axelera AI
14 Categories
View Details

aiSim 5

aiSim 5 stands as a cutting-edge simulation tool specifically crafted for the automotive sector, with a strong focus on validating ADAS and autonomous driving solutions. It distinguishes itself with an AI-powered digital twin creation capability, offering a meticulously optimized sensor simulation environment that guarantees reproducibility and determinism. The adaptable architecture of aiSim allows seamless integration with existing industry toolchains, significantly minimizing the need for costly real-world testing.\n\nOne of the key features of aiSim is its capability to simulate various challenging weather conditions, enhancing testing accuracy across diverse environments. This includes scenarios like snowstorms, heavy fog, and rain, with sensors simulated based on physics, offering changes in conditions in real-time. Its certification with ISO 26262 ASIL-D attests to its automotive-grade quality and reliability, providing a new standard for testing high-fidelity sensor data in varied operational design domains.\n\nThe flexibility of aiSim is further highlighted through its comprehensive SDKs and APIs, which facilitate smooth integration into various systems under test. Additionally, users can leverage its extensive 3D asset library to establish detailed, realistic testing environments. AI-based rendering technologies underpin aiSim's data simulation, achieving both high efficiency and accuracy, thereby enabling rapid and effective validation of advanced driver assistance and autonomous driving systems.

aiMotive
26 Categories
View Details

EW6181 GPS and GNSS Silicon

The EW6181 GPS and GNSS solution from EtherWhere is tailored for applications requiring high integration levels, offering licenses in RTL, gate-level netlist, or GDS formats. This highly adaptable IP can be ported across various technology nodes, provided an RF frontend is available. Designed to be one of the smallest and most power-efficient cores, it optimizes battery life significantly in devices such as tags and modules, making it ideal for challenging environments. The IP's strengths lie in its digital processing capabilities, utilizing cutting-edge DSP algorithms for precision and reliability in location tracking. With a digital footprint approximately 0.05mm² on a 5nm node, the EW6181 boasts a remarkably compact size, aiding in minimal component use and a streamlined Bill of Materials (BoM). Its stable firmware ensures accurate and reliable position fixations. In terms of implementation, this IP offers a combination of compact design and extreme power efficiency, providing substantial advantages in battery-operated environments. The EW6181 delivers critical support and upgrades, facilitating seamless high-reliability tracking for an array of applications demanding precise navigation.

EtherWhere Corporation
TSMC
7nm
19 Categories
View Details

LightningBlu - High-Speed Rail Connectivity

LightningBlu is a cutting-edge solution provided by Blu Wireless, designed specifically to serve the high-speed rail industry. This technology offers consistent, on-the-move multi-gigabit connectivity between trackside and train, which ensures a reliable provision of on-board services. These services include seamless internet access, enhanced entertainment options, and real-time information, creating a superior passenger experience while traveling. Utilizing mmWave technology, LightningBlu is capable of offering carrier-grade performance, supporting Mobility applications with remarkable consistency even at speeds exceeding 300 km/h. Such capabilities promise to revolutionize the connectivity standards within the high-speed rail networks. By integrating this advanced system, railway operators can ensure uninterrupted communication channels, thus optimizing their operations and boosting passenger satisfaction. The solution primarily operates within the mmWave spectrum of 57-71 GHz, making it a future-proof choice that aligns with the expanding global demand for high-quality, high-speed railway communications. With LightningBlu, Blu Wireless is spearheading the movement towards carbon-free, robust connectivity solutions, setting a new standard in the transportation sector.

Blu Wireless Technology Ltd.
17 Categories
View Details

CANmodule-III

The CANmodule-III is a sophisticated full CAN controller designed to handle communication on the CAN bus with outstanding efficiency. Built upon Bosch's fundamental CAN architecture, this module is fully CAN 2.0B compliant, facilitating seamless communication transactions across the network. It is optimized for system-on-chip integrations, providing customizable options to cater to specific application requirements. The module stands out with its inherited functions which ensure uninterrupted main core operations, even when additional functionalities are layered around it. Having been deployed in various applications from aerospace to industrial control, the CANmodule-III's proven reliability makes it a preferred choice for developers seeking robust communication solutions in FPGA and ASIC technologies.

Inicore Inc.
AMBA AHB / APB/ AXI, CAN, CAN-FD, PCI, UWB
View Details

Time-Triggered Protocol

The Time-Triggered Protocol (TTP) is a cornerstone of TTTech's offerings, designed for high-reliability environments such as aviation. TTP ensures precise synchronization and communication between systems, leveraging a time-controlled approach to data exchange. This makes it particularly suitable for safety-critical applications where timing and order of operations are paramount. The protocol minimizes risks associated with communication errors, thus enhancing operational reliability and determinism. TTP is deployed in various platforms, providing the foundation for time-deterministic operations necessary for complex systems. Whether in avionics or in industries requiring strict adherence to real-time data processing, TTP adapts to the specific demands of each application. By using this protocol, industries can achieve dependable execution of interconnected systems, promoting increased safety and reliability. In particular, TTP's influence extends into integrated circuits where certifiable IP cores are essential, ensuring compliance with stringent industry standards such as RTCA DO-254. Ongoing developments in TTP also include tools and methodologies that facilitate verification and qualification, ensuring that all system components communicate effectively and as intended across all operating conditions.

TTTech Computertechnik AG
AMBA AHB / APB/ AXI, CAN, CAN XL, CAN-FD, Cell / Packet, Error Correction/Detection, Ethernet, FlexRay, LIN, MIPI, Processor Core Dependent, Safe Ethernet, Temperature Sensor
View Details

Automotive IP

Silvaco provides a suite of Automotive IP tailored for in-vehicle network standards and SoC designs. With support for CAN-FD, FlexRay, and LIN, these production-proven controllers are essential for automotive systems. The IP package includes subsystems and peripherals like Quad SPI, UART, and power management units, ensuring comprehensive support for system design.

Silvaco Group, Inc.
CAN, CAN XL, CAN-FD, FlexRay, LIN
View Details

D2D® Technology - Direct-to-Data RF Conversion

D2D® Technology, developed by ParkerVision, is a revolutionary approach to RF conversion that transforms how wireless communication operates. This technology eliminates traditional intermediary stages, directly converting RF signals to digital data. The result is a more streamlined and efficient communication process that reduces complexity and power consumption. By bypassing conventional analog-to-digital conversion steps, D2D® achieves higher data accuracy and reliability. Its direct conversion approach not only enhances data processing speeds but also minimizes energy usage, making it an ideal solution for modern wireless devices that demand both performance and efficiency. ParkerVision's D2D® technology continues to influence a broad spectrum of wireless applications. From improving the connectivity in smartphones and wearable devices to optimizing signal processing in telecommunication networks, D2D® is a cornerstone of ParkerVision's technological offerings, illustrating their commitment to advancing communication technology through innovative RF solutions.

ParkerVision, Inc.
3GPP-5G, 3GPP-LTE, 802.11, A/D Converter, AMBA AHB / APB/ AXI, CAN, Coder/Decoder, Digital Video Broadcast, Platform Security, PLL, Receiver/Transmitter, RF Modules, USB, UWB, W-CDMA
View Details

SiGe BiCMOS Technology for RF

The SiGe BiCMOS technology is designed to handle demanding RF applications with optimal efficiency. This solution provides low noise figures and exceptional linearity, catering to wireless communication needs. With the inclusion of silicon-germanium, the technology leverages the benefits of reduced power consumption while maintaining high performance. In the RF domain, SiGe BiCMOS stands out due to its effective integration of high-speed bipolar and low-power CMOS transistors on the same chipset, enhancing its appeal for designers. This integration supports a wide range of frequencies, addressing the diverse needs of today's communication systems. Engineers often choose SiGe BiCMOS for applications where both analog and digital processing are required on a single platform. Its versatility and reliability make it ideal for infrastructure markets and portable devices, helping designers achieve their performance targets while streamlining manufacturing processes.

Tower Semiconductor Ltd.
Tower
All Process Nodes
A/D Converter, Amplifier, Analog Front Ends, CAN, Clock Synthesizer, Photonics, PLL, RF Modules
View Details

L5-Direct GNSS Receiver

The L5-Direct GNSS Receiver by oneNav is a revolutionary solution built to leverage the advanced capabilities of L5-band satellite signals. Distinguishing itself by operating solely on the L5 frequency, this product delivers exceptional positioning accuracy and resilience, free from the interference commonly associated with legacy L1 signals. This advanced GNSS receiver is engineered to cater to a variety of professional applications that demand robust performance under challenging conditions, such as dense urban areas.\n\nLeveraging oneNav's proprietary Application Specific Array Processor (ASAP), the system provides best-in-class GPS signal acquisition and processing without compromising sensitivity or fix time. The use of an innovative single RF chain allows for optimal antenna placement, reducing the overall form factor and enabling integration into devices that require stringent size and cost constraints. This makes it an ideal choice for wearable and IoT device applications where space and energy consumptions are pivotal considerations.\n\nAdditionally, the L5-Direct GNSS Receiver incorporates machine learning algorithms to effectively mitigate multipath errors, offering unrivaled accuracy by distinguishing direct from reflected signals. The system is specifically designed to be energy efficient, offering extended operational life critical for applications such as smart wearables and asset tracking devices. Its resilience against GPS jamming and interference ensures it remains a reliable choice for mission-critical operations.

oneNav, Inc.
ADPCM, AI Processor, Bluetooth, CAN, Ethernet, GPS, Other, Processor Core Independent, Security Protocol Accelerators, Wireless Processor
View Details

RFicient chip for IoT

The RFicient chip is a cutting-edge technology designed to optimize power usage in IoT applications. This ultra-low-power receiver is ideal for environments requiring long-term battery operation, such as remote sensors in industrial IoT setups. With its efficient energy harvesting capabilities, the RFicient chip is pivotal in advancing sustainable technology solutions, reducing power consumption within the Internet of Things (IoT) framework.

Fraunhofer Institute for Integrated Circuits IIS
3GPP-5G, 3GPP-LTE, AI Processor, CAN, CAN XL, CAN-FD, Coprocessor, DSP Core, FlexRay, GPS, IoT Processor, LIN, OBSAI, Power Management, Sensor, UWB, W-CDMA, Wireless Processor, Wireless USB
View Details

Dual-Drive™ Power Amplifier - FCM1401

The FCM1401 is a highly efficient 14GHz CMOS power amplifier tailored for applications within the Ku-band spectrum, typically ranging from 12.4GHz to 16GHz. It excels in performance by delivering significant RF output power also characterized by a gain of 22dB. This amplifier is engineered with a power added efficiency (PAE) of 47%, making it an optimal choice for long-range communication systems where energy conservation is paramount. Additionally, it operates with a supply voltage of 1.8V, which aligns with its design for lower power consumption. This product is available in a QFN package, providing a compact solution for modern RF system designs.

Falcomm
3GPP-5G, 802.11, A/D Converter, CAN, Coder/Decoder, Ethernet, Input/Output Controller, PLL, Power Management, Receiver/Transmitter, RF Modules, USB, V-by-One, W-CDMA
View Details

ArrayNav Adaptive GNSS Solution

ArrayNav harnesses adaptive antenna technology to enhance GNSS functionality, optimizing performance in environments with complex multichannel challenges. By leveraging various antennas, ArrayNav achieves enhanced sensitivity and coverage, significantly mitigating issues such as multipath fading. This results in greater positional accuracy even in dense urban environments known for signal interference. This adaptive approach presents an invaluable asset for automotive Advanced Driver Assistance Systems (ADAS), where high precision and rapid response times are critical. The improved antenna diversity offered by ArrayNav not only augments signal strength but also robustly rejects interference and jamming attempts, assuring consistent operation and accuracy. In terms of power efficiency, ArrayNav stands out by combining exceptional accuracy with reduced power needs, offering a flexible solution adaptable for both standalone and cloud-computing modes. This dual capability ensures that system designers have the optimal framework for developing customized solutions catering to specific application requirements. Overall, ArrayNav’s cutting-edge technology fosters improved GNSS operations by delivering enhanced sensitivity and accuracy, thereby meeting the stringent demands of modern automotive and navigation systems.

EtherWhere Corporation
18 Categories
View Details

Complete RF Transceiver 433, 868 & 915 MHz

ShortLink offers a powerful and comprehensive RF Transceiver IP for 433, 868, and 915 MHz frequency bands, which is compliant with the IEEE 802.15.4-2015 standard. With features like data rates ranging from 1.2 k to 500 kbps, it provides a robust solution for diverse low-power wireless network applications. The transceiver handles both transmission and reception at various bands, making it suitable for worldwide deployment. The integration is simplified with built-in voltage regulators, bandgap references, and bias generation. The flexible design of this RF transceiver supports different modulation techniques, including GFSK, BPSK, and O-QPSK, catering to a wide range of communication needs. The configurable architecture ensures compatibility with custom protocols beyond standard applications, providing adaptability for unique project requirements. Built for reliability, the IP showcases RX sensitivity down to -106 dBm and TX power ranging from -20 to +8 dBm, ensuring long-distance communication capabilities and excellent power efficiency. The inherent compliance with standard wireless communication protocols eliminates the need for external radio chips, streamlining the integration process into various SoC designs.

ShortLink AB
All Foundries
All Process Nodes
3GPP-5G, AMBA AHB / APB/ AXI, CAN, Ethernet, JESD 204A / JESD 204B, Network on Chip, Other, PLL, RF Modules, W-CDMA
View Details

DB9000AXI Display Controller

The DB9000AXI Display Controller is engineered to interface with Frame Buffer Memory through the AMBA AXI Protocol, connecting seamlessly to display panels with variable resolutions from QVGA up to full HD, with options for 4K and 8K enhancements. This versatile controller is crafted to manage a broad spectrum of display resolutions, and advanced versions integrate complex composition features like overlay windows, hardware cursor, and color space conversion. An emphasis is placed on blending and resizing, making it particularly suitable for high-definition display projects.

Digital Blocks
AMBA AHB / APB/ AXI, CAN, Clock Generator, CRT Controller, GPU, LCD Controller, Peripheral Controller, RapidIO, Receiver/Transmitter
View Details

hellaPHY Positioning Solution

The hellaPHY Positioning Solution from PHY Wireless is crafted to optimize IoT deployments across various environments using 5G networks. It melds advanced algorithms with cutting-edge edge computing capabilities to deliver stunningly accurate and efficient location services. The technology, by leveraging existing cellular infrastructures, achieves superior accuracy akin to GNSS systems but at a fraction of the power and data cost, making it ideal for environments where traditional systems falter. What distinguishes hellaPHY is its ability to independently estimate locations within the device, preserving user privacy by avoiding external storage or cloud computation of location data. This self-sufficiency not only ensures data security but also dramatically reduces network congestion, furthering its utility in dense IoT networks. The hellaPHY solution boasts adaptability to existing infrastructure, providing operators with unprecedented spectral efficiency. It allows seamless integration into various devices with minimal impact on current setups, providing a compelling reason for firms to employ this breakthrough technology for boosting IoT scalability and performance.

PHY Wireless Inc.
3GPP-5G, 3GPP-LTE, AMBA AHB / APB/ AXI, ATM / Utopia, CAN, Error Correction/Detection, Ethernet, Fibre Channel, GPS, PCI, PLL, USB, V-by-One, W-CDMA, Wireless Processor
View Details

CAN 2.0/CAN FD Controller

The CAN 2.0/CAN FD Controller offered by Synective Labs is a comprehensive CAN controller suitable for integration into both FPGAs and ASICs. This controller is fully compliant with the ISO 11898-1:2015 standard, supporting both traditional CAN and the more advanced CAN FD protocols. The CAN FD protocol enhances the original CAN capabilities by transmitting payloads at increased bitrates up to 10 Mbit/s and accommodating longer payloads of up to 64 bytes compared to the standard 8 bytes. This controller integrates seamlessly with a variety of FPGA devices from leading manufacturers such as Xilinx, Altera, Lattice, and Microsemi. It supports native bus interfaces including AXI, Avalon, and APB, making it versatile and highly compatible with various processing environments. For those deploying System on Chip (SOC) type FPGAs, the controller offers robust processor integration options, making it an ideal choice for complex applications. A standout feature of this IP is its focus on diagnostics and CAN bus debugging, which makes it particularly beneficial for applications like data loggers. These diagnostic features can be selectively disabled during the build process to reduce the controller's footprint for more traditional uses. With its low-latency DMA, interrupt rate adaptation, and configurable hardware buffer size, this CAN controller is engineered for high efficiency and flexibility across different applications.

Synective Labs AB
AMBA AHB / APB/ AXI, CAN, CAN-FD, Interlaken, Receiver/Transmitter
View Details

CANmodule-IIIx

CANmodule-IIIx represents a cutting-edge CAN controller featuring post-modern enhancements for high-performance communication. This advanced controller, while fully adhering to CAN 2.0B standards, boasts 32 receive and 32 transmit mailboxes. Tailored for streamlined integrations, it ensures flexibility and innovation be it an FPGA or an ASIC system. By preserving the core's fundamental function while allowing added wrapping features, the CANmodule-IIIx provides unmatched adaptability without compromising on performance. The module has demonstrated its efficiency in sectors like automotive and telecommunications, ensuring swift data transactions and system reliability across various operational environments.

Inicore Inc.
AMBA AHB / APB/ AXI, CAN, CAN-FD, PCI, UWB
View Details

GDP-XL Design Management System

The GDP-XL Design Management System by IC Manage is a high-performance, global solution designed for seamless design and IP management. It excels in providing a robust framework for collaboration across single and multiple design sites, integrating teams in different locations securely and efficiently. This system is particularly valued for its ability to support rigorous control over databases, ensuring the accuracy and consistency required for critical RFIC design processes. With GDP-XL, companies can manage their design data more reliably, addressing challenges commonly faced in semiconductor design environments. It offers enhanced productivity through unrivaled scalability and flexibility, allowing organizations to adapt to ever-changing design requirements without compromise. The system's advanced capabilities are leveraged by top-tier semiconductor companies to maintain a competitive edge in a fast-paced industry. As the industry's leading design data and IP management system, GDP-XL also supports innovative collaboration patterns, enabling seamless sharing and revision control among global teams. Its robust architecture facilitates the integration of various methodologies, aiding companies in efficiently navigating complex designs and maintaining meticulous tracking of their IP assets.

IC Manage
CAN
View Details

ARDSoC Embedded DPDK

ARDSoC is a pioneering embedded DPDK solution tailored for ARM-based SoCs, specifically engineered to enhance ARM processor performance by bypassing the traditional Linux network stack. This solution brings the efficiencies of DPDK, traditionally reserved for datacenter environments, into the embedded and MPSoC sphere, extending DPDK functionalities to a broader range of applications. The architecture of ARDSoC allows users to minimize power consumption, decrease latency, and reduce the total cost of ownership compared to conventional x86 solutions. This IP product facilitates packet processing applications and supports various technologies such as VPP, Docker, and Kubernetes, ensuring hardware-accelerated embedded network processing. Designed for integration across Xilinx Platforms, ARDSoC also offers high flexibility with the ability to run existing DPDK programs with minimal modification. It is optimized for performance on ARM A53 and A72 processors, ensuring that data structures are efficiently produced and consumed in hardware, thereby providing robust and reliable network data handling capabilities.

Atomic Rules LLC
14 Categories
View Details

CANsec Controller Core

The CANsec Controller Core is crafted to cater to the emerging needs of secure in-vehicle communication systems. Adding a layer of security to the traditional Controller Area Network (CAN), this core incorporates advanced encryption and decryption capabilities, ensuring data is transmitted securely within the vehicle's network. With a rising number of electronic control units (ECUs) in vehicles, safeguarding the integrity and confidentiality of data is paramount, and CANsec excels in this domain. Emphasizing robust security protocols, the CANsec Controller Core is pivotal in protecting automotive systems from unauthorized access and cyber threats. It integrates seamlessly with existing CAN systems, allowing for an enhanced security overlay that does not compromise the network's performance or reliability. By ensuring the confidentiality and authenticity of the messages exchanged, this core addresses critical concerns in automotive cybersecurity, reinforcing trust in vehicular network communications. The versatile nature of CANsec allows it to be embedded in various ECUs, ensuring comprehensive protection across the network. As automakers increasingly rely on interconnected systems, this core supports the secure deployment of advanced features and services, enhancing consumer confidence in the safety and reliability of electronic vehicle systems.

Fraunhofer Institute for Photonic Microsystems (IPMS)
HHGrace, Samsung
14nm FinFET, 55nm
CAN, CAN XL, CAN-FD, Cryptography Cores, Cryptography Software Library, Embedded Security Modules, Flash Controller, Security Protocol Accelerators, Temperature Sensor
View Details

PCE04I Inmarsat Turbo Encoder

The PCE04I Inmarsat Turbo Encoder is engineered to optimize data encoding standards within satellite communications. Leveraging advanced state management, it enhances data throughput by utilizing a 16-state encoding architecture. This sophisticated development enables efficient signal processing, pivotal for high-stakes communication workflows. Furthermore, the PCE04I is adaptable across multiple frameworks, catering to diverse industry requirements. Innovation is at the forefront with the option of integrating additional state Viterbi decoders, tailoring performance to specific needs and bolstering reliability in communications.

Small World Communications
CAN, Digital Video Broadcast, Error Correction/Detection, Ethernet, W-CDMA
View Details

PhantomBlu - Tactical Communications

PhantomBlu by Blu Wireless is engineered for defense applications, focusing on delivering high-speed, secure, and reliable tactical communications. This mmWave networking solution is designed to be independent of conventional fibre optic or cabled networks, granting greater flexibility and range. With the capability to easily integrate with both legacy platforms and upcoming technological assets, PhantomBlu ensures interoperability and robust connectivity in demanding environments. The mmWave technology used in PhantomBlu allows for multi-gigabit data transmission over significant distances, catering to the dynamic needs of military operations. It can be configured to function as a PCP (hub) or STA (client), enhancing its adaptability in tactical scenarios. This flexibility is vital for mission-critical communications, ensuring data-rich, secure connections even in highly contested environments. By employing low Probability of Detection (LPD) and Low Probability of Interception (LPI) techniques, PhantomBlu provides stealthy communication capabilities, significantly reducing the risks of detection and interference by adversaries. This advanced technology strengthens the defense sector's communication arsenal, providing reliable gigabit connectivity that supports strategic and operational superiority on the battlefield.

Blu Wireless Technology Ltd.
24 Categories
View Details

APIX3 Transmitter and Receiver Modules

APIX3 stands as the third generation of Inova’s APIX technology, engineered to elevate the capacity and functionality of automotive infotainment systems. APIX3 enables the transmission of UHD video over singular or multiple channels, reaching speeds of up to 12 Gbps with quad twisted pair cables. This latest version maintains backwards compatibility with APIX2 and includes advanced diagnostic tools to monitor cable integrity. Its advanced features offer enhanced Ethernet and serial protocol support, meeting a broad spectrum of automotive communication needs.

INOVA Semiconductors GmbH
AMBA AHB / APB/ AXI, ATM / Utopia, CAN, D2D, Ethernet, Fibre Channel, Gen-Z, Graphics & Video Modules, HDMI, LIN, PowerPC, Receiver/Transmitter, Safe Ethernet, SAS, USB, V-by-One
View Details

Wireless Baseband IP

The Wireless Baseband IP from Low Power Futures is a sophisticated solution designed for small, ultra-low-power devices in IoT applications. It comprises a baseband processor hardware IP, the link layer or medium access control layer firmware, and integrated security features. This product is specifically optimized to ensure a minimal code size, while providing power and area efficiency. The Wireless Baseband IP supports standard compliance and can be easily integrated into systems on chips (SoCs). It is validated on FPGA platforms, making it a robust solution for developers aiming to leverage low-power IoT networks. This IP is versatile, finding applications in smart homes, smart city infrastructures, and connected audio systems. Its customizable nature allows for easy adaptation to various embedded processors, enabling seamless integration in different environments. The IP's design emphasizes efficient resource use, crucial for IoT devices that demand long battery life and low operational cost.

Low Power Futures
All Foundries
All Process Nodes
16 Categories
View Details

INAP590T

The INAP590T combines advanced transmission capabilities with cutting-edge security features like HDCP support. It facilitates the secure transmission of video and audio data, supporting high-definition multimedia interfaces. Aimed primarily at automotive infotainment systems, this transmitter offers scalable bandwidth options, ensuring that even with the transmission of multiple video streams, data integrity and speed are not compromised. Its ability to adapt to various transmission setups makes it a core component in the latest infotainment architectures.

INOVA Semiconductors GmbH
Arbiter, ATM / Utopia, CAN, Ethernet, Fibre Channel, Gen-Z, Graphics & Video Modules, HDMI, LIN, PowerPC, Receiver/Transmitter, Safe Ethernet, USB, UWB, V-by-One
View Details

ASPER 79GHz Short-Range Radar Sensor

The ASPER Radar Sensor is a cost-effective 79 GHz short-range mmWave radar. This innovative sensor is optimized for mobility applications and is an excellent alternative to ultrasonic park assist sensors, offering a 180° field of view with a single module. With its cutting-edge technological features, it enables superior detection of obstacles and supports multiple functionalities including gesture recognition and collision warnings. These features make it suitable for comprehensive vehicle awareness and assist systems.

NOVELIC
3GPP-LTE, AMBA AHB / APB/ AXI, Bluetooth, CAN, CAN XL, CAN-FD, Ethernet, FlexRay, RF Modules, Sensor
View Details

CANmodule-IIx

The CANmodule-IIx is a versatile FIFO-based CAN controller designed for robust communication solutions. This module guarantees full compliance with CAN 2.0B specifications, offering unmatched support for system-on-chip configurations. Ingeniously crafted for flexibility, this controller serves a wide array of applications like industrial automation and network communications. The FIFO-based architecture ensures efficient message handling, particularly in environments demanding high-speed data transactions. With successful deployments in multiple technology platforms, the CANmodule-IIx stands as an enduring solution for businesses striving to enhance bus-based communication efficiency.

Inicore Inc.
AMBA AHB / APB/ AXI, CAN, CAN-FD, PCI, UWB
View Details

CAN Controller

The CAN Controller IP core implements the standard Controller Area Network protocol as defined by ISO 11898 Part 1 and the CAN Specification Version 2.0. It is essential for facilitating robust communication in automotive and industrial applications, supporting efficient data transmission across networks. By integrating mature and well-tested features, the CAN Controller is positioned as a reliable solution for managing data exchanges in environments that demand high reliability and efficiency. Its design supports high-speed communication and is capable of handling robust user requirements. This core is customizable, allowing it to be tailored to specific application needs while maintaining compliance with industry specifications. Its deployment ensures effective communication within networks, serving as a backbone for distributed control applications, making it indispensable in the modern digital landscape.

SafeCore Devices
CAN
View Details

CAN XL

DCAN XL redefines data communication by bridging the performance gap between CAN FD and 100Mbit Ethernet, setting a new benchmark in high-speed, flexible connectivity. With data rates up to 20 Mbit/s and payloads reaching 2048 bytes, it delivers unprecedented throughput—far beyond traditional CAN standards. Engineered for versatility, DCAN XL supports advanced protocol layering and Ethernet frame tunneling, making it an ideal choice for future-proof automotive, industrial, and IoT applications. It retains the robustness and reliability of the CAN protocol while offering full backward compatibility with Classical CAN, CAN FD, and CAN XL—ensuring effortless integration into existing systems. For physical layer connectivity, DCAN XL interfaces seamlessly with standard CAN transceivers (sub-10Mbps) and CAN SIC XL transceivers (above 10Mbps), providing flexibility without compromise. It’s not just evolution—it’s the next revolution in controller area networking.

Premium Vendor
DCD-SEMI
All Foundries
All Process Nodes
CAN, CAN XL, CAN-FD, Other, Safe Ethernet
View Details

AVB/Automotive Ethernet Switch

The AVB/Automotive Ethernet Switch is specialized for automotive and AVB networking solutions requiring precise timing and reliable data transfer. Targeting automotive applications, it fully supports Audio Video Bridging (AVB) standards to provide synchronized media streaming over Ethernet. This switch boasts capabilities like traffic shaping and queue prioritization to ensure consistent data flow, crucial in automotive environments with critical safety requirements. The integration of IEEE 802.1AS and IEEE 1588 standards ensures that synchronization across devices is achieved with sub-microsecond level accuracy. Advanced VLAN support and security protocols further enhance its applicability in networked vehicle systems, ensuring seamless interoperability and high reliability. Customization features enable it to be fine-tuned for specific automotive applications, making it a highly adaptable and future-proof solution for the industry.

System-On-Chip Engineering, S.L.
AMBA AHB / APB/ AXI, Audio Interfaces, CAN, Ethernet, IEEE1588, LIN, Peripheral Controller, Safe Ethernet
View Details

SpaceWire Node

The SpaceWire Node is engineered for critical communications in space networking environments. Integrating the AXI-Stream and SpaceWire interfaces, it facilitates robust data transfer speeds up to 200Mbps. The interface compliance with ECSS-E-ST-50-12C standards assures reliability and compatibility within the standardized space systems. Equipped with an internal management interface via AXI4-Lite, the SpaceWire Node can be efficiently controlled and monitored. The node's architecture is optimized for secure and efficient routing of space-borne data, aligning with the stringent reliability requirements of the aerospace sector. It comes with extensive features such as statistic registers for monitoring and performance evaluation, ensuring the node's abilities to meet rigorous performance benchmarks. Its design reflects an emphasis on interoperability and future scalability within complex space communications networks.

System-On-Chip Engineering, S.L.
ATM / Utopia, CAN, FlexRay, Interleaver/Deinterleaver, MIPI, OBSAI, Optical/Telecom, VESA
View Details

logiCAN CAN 2.0B Compatible Network Controller

The logiCAN controller equips AMD FPGA designs with CAN 2.0B compatibility, supporting robust automotive network communication. Easily integrated using AMD development tools, this IP core facilitates the implementation of reliable, high-speed automotive communication networks, central to modern vehicle electronics.

Xylon
CAN, CAN-FD
View Details

XA035 Automotive Sensor Platform

The XA035 Automotive Sensor Platform stands as a versatile and high-performance solution tailored for automotive applications. This IP is crafted using X-FAB's advanced CMOS technology to deliver precise sensor functions that meet the automotive industry's stringent standards. The platform facilitates robust integration within vehicular systems, aiding in the development of reliable and accurate automotive components that are critical under varying operational conditions. Designed to endure the demanding environments of automotive applications, the XA035 platform excels in adapting to temperature fluctuations, vibrations, and other environmental stresses, ensuring consistent performance of automotive electronics. It is pivotal for executing tasks such as pressure sensing, temperature monitoring, and other crucial vehicle diagnostics that contribute to enhanced safety and efficiency on the road. The XA035 platform also supports customization, enabling automotive manufacturers to tailor the sensors to specific requirements, thereby optimizing vehicle performance and fuel efficiency. It underscores X-FAB's dedication to innovation in the automotive sector, providing reliable semiconductor solutions that drive next-generation vehicular technology.

X-FAB Silicon Foundries SE
X-Fab
110nm
CAN, CAN XL, CAN-FD, FlexRay, LIN, Sensor
View Details

XH035 Sensor and High-Voltage Platform

XH035 Sensor and High-Voltage Platform has been meticulously developed to cater to high-voltage and sensor integration needs, common in industrial and power applications. This high-performance platform blends the robustness of sensor technologies with the versatility of high-voltage handling, providing a dual advantage to manufacturers needing reliable and scalable solutions. The XH035 platform proficiently manages high-voltage operations while maintaining precise sensor data acquisition, making it ideal for a wide span of industrial applications, from automation to energy management. Its ability to handle high-voltage applications ensures operational consistency and reliability under extreme conditions, proving indispensable for sectors prioritizing durability and performance. Additionally, the platform's adaptability makes it suitable for custom developments, allowing engineers to design applications that meet specific technological needs. This capability reflects X-FAB's commitment to driving innovation and providing industries with semiconductor solutions that enhance operational efficiencies and application responses.

X-FAB Silicon Foundries SE
X-Fab
110nm
Analog Subsystems, CAN, CAN XL, CAN-FD, FlexRay, LIN, Sensor, Switched Cap Filter
View Details

XO035 Sensor Technology

The XO035 Sensor Technology, previously under X-FAB, integrates highly reliable sensors in critical applications for a variety of industries. Leveraging a CMOS-based process, this technology delivers robust performance through sophisticated sensor designs, ensuring precise data acquisition and integrated signal processing essential to automotive, medical, and industrial sectors. The platform supports a high level of customization to meet specific client needs and enhance device functionality. With a focus on facilitating integration, the XO035 Sensor Technology offers seamless interfacing with various system components, improving overall device performance. It aligns with industry standards for safety and reliability, making it ideal for deployments in environments that require stringent quality control and operational excellence. In addition to providing enhanced sensor capabilities, the technology offers flexibility in adapting to evolving market demands, ensuring sustainability and longevity of application in dynamic use-cases. The XO035 platform remains a testament to X-FAB's commitment to innovation and excellence in semiconductor solutions, making advanced sensing technology accessible to diverse industries.

X-FAB Silicon Foundries SE
X-Fab
110nm
CAN, RF Modules, Sensor, Switched Cap Filter
View Details
Sign up to Silicon Hub to buy and sell semiconductor IP

Sign Up for Silicon Hub

Join the world's most advanced semiconductor IP marketplace!

It's free, and you'll get all the tools you need to discover IP, meet vendors and manage your IP workflow!

No credit card or payment details required.

Sign up to Silicon Hub to buy and sell semiconductor IP

Welcome to Silicon Hub

Join the world's most advanced AI-powered semiconductor IP marketplace!

It's free, and you'll get all the tools you need to advertise and discover semiconductor IP, keep up-to-date with the latest semiconductor news and more!

Plus we'll send you our free weekly report on the semiconductor industry and the latest IP launches!

Switch to a Silicon Hub buyer account to buy semiconductor IP

Switch to a Buyer Account

To evaluate IP you need to be logged into a buyer profile. Select a profile below, or create a new buyer profile for your company.

Add new company

Switch to a Silicon Hub buyer account to buy semiconductor IP

Create a Buyer Account

To evaluate IP you need to be logged into a buyer profile. It's free to create a buyer profile for your company.

Chatting with Volt