All IPs > Analog & Mixed Signal > Analog Front Ends
Analog Front Ends (AFEs) are integral components in modern electronic design, bridging the gap between analog signals from the outside world and the digital systems that process these signals. At Silicon Hub, our semiconductor IPs in the Analog Front Ends category are engineered to ensure high fidelity and efficiency in transferring signals with minimal loss or distortion. These components are crucial in a variety of applications, from telecommunications to medical devices, where precise signal interpretation is paramount.
Analog Front Ends serve as the initial interface in communication systems, sensor networks, and various digital processing environments. They typically include amplifiers, filters, and converters designed to condition incoming analog signals for further digital processing. This conditioning is vital for achieving accurate, high-quality data capture, allowing downstream digital processors to work more effectively. Whether dealing with audio signals, video inputs, or complex sensor data, AFEs ensure the integrity of the analog portion of the signal chain.
In the realm of telecommunications, Analog Front Ends are employed to refine and equalize signals received from mobile networks, satellites, or optical fibers, ensuring clear and reliable communication. In consumer electronics, they are crucial in devices like smartphones and televisions, where high-resolution signal conversion and processing are required to maintain performance standards. Analog Front Ends also find applications in medical instrumentation, where they play a role in sensitive equipment such as ECGs and MRIs by enabling accurate physiological data collection and analysis.
Our collection at Silicon Hub features a variety of Analog Front Ends semiconductor IPs designed to meet the most demanding industry standards. We offer solutions that provide scalability, cost-effectiveness, and power efficiency, essential for both emerging technologies and traditional systems. By integrating these AFEs into your projects, you can ensure your devices are equipped to handle the challenges of modern signal processing, ultimately enhancing your products' capabilities and competitiveness in the market. Explore our range to find the perfect match for your design needs.
The Mixel MIPI C-PHY IP (MXL-CPHY) is a high-frequency, low-power, low cost, physical layer. (Learn more about Mixel’s MIPI ecosystem at Mixel MIPI Central which gives you access to Mixel’s best of class MIPI ecosystem supply chain partners.) The C-PHY configuration consists of up to three lane modules and is based on 3-Phase symbol encoding technology, delivering 2.28 bits per symbol over three-wire trios and targeting a maximum rate of 2.5 Gsps, 5.7Gbps. The C-PHY is partitioned into a digital module – CIL (Control and Interface Logic) and a mixed-signal module. The PHY IP is provided as a combination of soft IP views (RTL, and STA Constraints) for the digital module, and hard IP views (GDSII/CDL/LEF/LIB) for the mixed-signal module. This unique offering of both soft and hard IP permits architectural design flexibility and seamless implementation in customer-specific design flow. The CIL module interfaces with the protocol layer and determines the global operation of the module. The interface between the PHY and the protocol is using the PHY-Protocol Interface (PPI). The mixed-signal module includes high-speed signaling mode for fast-data traffic and low-power signaling mode for control purposes. During normal operation, a lane switches between low-power and high-speed mode. Bidirectional lanes can also switch communication direction. The change of operating mode or direction requires enabling and disabling of certain electrical functions. These enable and disable events do not cause glitches on the lines that would result in a detection of incorrect signal levels. All mode and direction changes are smooth to always ensure a proper detection of the line signals. Mixel’s C-PHY is a complete PHY, silicon-proven at multiple foundries and multiple nodes. It is built to support the MIPI Camera Serial Interface (CSI) and Display Serial Interface (DSI).
The Mixel MIPI C/D-PHY combo IP (MXL-CPHY-DPHY) is a high-frequency low-power, low cost, physical layer compliant with the MIPI® Alliance Standard for C-PHY and D-PHY. (Learn more about Mixel’s MIPI ecosystem at Mixel MIPI Central which gives you access to Mixel’s best of class MIPI ecosystem supply chain partners.) The PHY can be configured as a MIPI Master or MIPI Slave, supporting camera interface CSI-2 v1.2 or display interface DSI v1.3 applications in the D-PHY mode. It also supports camera interface CSI-2 v1.3 and display interface DSI-2 v1.0 applications in the C-PHY mode. The high-speed signals have a low voltage swing, while low-power signals have large swing. High-Speed functions are used for high-speed data traffic while low-power functions are mostly used for control. The C-PHY is based on 3-Phase symbol encoding technology, delivering 2.28 bits per symbol over three-wire trios, operating with a symbol rate range of 80 to 4500 Msps per lane, which is the equivalent of about 182.8 to 10260 Mbps per lane. The D-PHY supports a bit rate range of 80 to 1500 Mbps per Lane without deskew calibration, and up to 4500 Mbps with deskew calibration. The low-power mode and escape mode are the same in both the D-PHY and C-PHY modes. To minimize EMI, the drivers for low-power mode are slew-rate controlled and current limited. The data rate in low-power mode is 10 Mbps. For a fixed clock frequency, the available data capacity of a PHY configuration can be increased by using more lanes. Effective data throughput can be reduced by employing burst mode communication. Mixel’s C-PHY/D-PHY combo is a complete PHY, silicon-proven at multiple foundries and multiple nodes. The C/D-PHY is fully integrated and has analog circuitry, digital, and synthesizable logic.
The Mixel MIPI D-PHY IP (MXL-DPHY) is a high-frequency low-power, low cost, source-synchronous, physical layer compliant with the MIPI® Alliance Standard for D-PHY. (Learn more about Mixel’s MIPI ecosystem at Mixel MIPI Central which gives you access to Mixel’s best of class MIPI ecosystem supply chain partners.) Although primarily used for connecting cameras and display devices to a core processor, this MIPI PHY can also be used for many other applications. It is used in a master-slave configuration, where high-speed signals have a low voltage swing, and low-power signals have large swing. High-speed functions are used for high-speed data traffic while low-power functions are mostly used for control. The D-PHY is partitioned into a Digital Module – CIL (Control and Interface Logic) and a Mixed Signal Module. It is provided as a combination of Soft IP views (RTL, and STA Constraints) for Digital Module, and Hard IP views (GDSII/CDL/LEF/LIB) for the Mixed Signal Module. This unique offering of Soft and Hard IP permits architectural design flexibility and seamless implementation in customer-specific design flow. The CIL module interfaces with the protocol layer and determines the global operation of the lane module. The interface between the D-PHY and the protocol is called the PHY-Protocol Interface (PPI). During normal operation, the data lane switches between low-power mode and high-speed mode. Bidirectional lanes can also switch communication direction. The change of operating mode or direction requires enabling and disabling certain electrical functions. These enable and disable events do not cause glitches on the lines that would otherwise result in detections of incorrect signal levels. Therefore, all mode and direction changes occur smoothly, ensuring proper detection of the line signals. Mixel’s D-PHY is a complete PHY, silicon-proven at multiple foundries and multiple nodes. This MIPI PHY is fully integrated and has analog circuitry, digital, and synthesizable logic. Our D-PHY is built to support the MIPI Camera Serial Interface (CSI) and Display Serial Interface (DSI) using the PHY Protocol Interface (PPI). Mixel has provided this IP in many different configurations to accommodate different applications. The Universal Lane configuration can be used to support any allowed use-case, while other configurations are optimized for many different use cases such as Transmit only, Receive only, DSI, CSI, TX+ and RX+. Both TX+ and RX+ configurations support full-speed loopback operation without the extra area associated with a universal lane configuration.
The Mixel MIPI M-PHY (MXL-MPHY) is a high-frequency low-power, Physical Layer IP that supports the MIPI® Alliance Standard for M-PHY. (Learn more about Mixel’s MIPI ecosystem at Mixel MIPI Central which gives you access to Mixel’s best of class MIPI ecosystem supply chain partners.) The IP can be used as a physical layer for many applications, connecting flash memory-based storage, cameras and RF subsystems, and for providing chip-to-chip inter-processor communications (IPC). It supports MIPI UniPro and JEDEC Universal Flash Storage (UFS) standard. By using efficient BURST mode operation with scalable speeds, significant power savings can be obtained. Selection of signal slew rate and amplitude allows reduction of EMI/RFI, while maintaining low bit error rates.
The ARINC 818 Product Suite is a comprehensive solution designed for professionals working with advanced avionics systems. It provides a robust framework for implementing, testing, and simulating ARINC 818 systems. The product suite includes a variety of tools and resources tailored for the lifecycle of ARINC 818 systems, ensuring that clients can develop mission-critical systems with confidence. With a primary focus on performance and scalability, the ARINC 818 Product Suite is developed to cater to complex requirements and to seamlessly integrate within existing technology stacks. Users benefit from its extensive compatibility and the ability to manage high-speed data effectively, making it a vital asset for those working in aviation and defense sectors.
Altek's 3D Imaging Chip is a breakthrough in the field of vision technology. Designed with an emphasis on depth perception, it enhances the accuracy of 3D scene capturing, making it ideal for applications requiring precise distance gauging such as autonomous vehicles and drones. The chip integrates seamlessly within complex systems, boasting superior recognition accuracy that ensures reliable and robust performance. Building upon years of expertise in 3D imaging, this chip supports multiple 3D modes, offering flexible solutions for devices from surveillance robots to delivery mechanisms. It facilitates medium-to-long-range detection needs thanks to its refined depth sensing capabilities. Altek's approach ensures a comprehensive package from modular design to chip production, creating a cohesive system that marries both hardware and software effectively. Deployed within various market segments, it delivers adaptable image solutions with dynamic design agility. Its imaging prowess is further enhanced by state-of-the-art algorithms that refine image quality and facilitate facial detection and recognition, thereby expanding its utility across diverse domains.
The aLFA-C is a programmable interfacing ASIC designed specifically for space-borne infrared ROICs and other image sensors. It significantly reduces the need for traditional front-end electronics by integrating essential functions onto a single chip. A standout feature includes its capability to operate with a single unregulated supply, aided by on-chip LDOs and regulators. aLFA-C offers extensive programmability, including a fully programmable sequencer for ROIC interfacing, and supports various digital output configurations such as CMOS, LVDS, or CML. It includes SPI interfaces for seamless image sensor integration and features analog acquisition over multiple channels, with high precision 16-bit ADCs, allowing parallel or interleave configuration for flexible data handling speeds. This ASIC is equipped with several measurement capabilities for resistance, voltage, and current, and provides programmable voltage and current sources. With resilience against TID, SEU, and SEL, it's highly reliable in harsh space environments. It's operational over a wide temperature range from 35K to 330K, suitable for varied applications in extreme conditions.
The HOTLink II Product Suite is designed to facilitate high-speed connectivity and data transfer in demanding environments. This suite of products offers robust solutions for those needing reliable and fast data links, catering to industries where performance and precision are crucial. As part of Great River Technology's offerings, HOTLink II stands out by providing comprehensive support throughout product lifecycles and ensuring compatibility with various systems. With HOTLink II, users can expect exceptional levels of performance and reliability thanks to its advanced design, which is geared towards meeting the rigorous demands of aerospace and defense applications. Whether implementing new systems or upgrading existing infrastructures, the HOTLink II Product Suite provides the versatility and capability needed to meet diverse clients' needs. The suite is particularly beneficial for engineers requiring high-performance link solutions that integrate seamlessly within larger systems, enhancing operational effectiveness and efficiency. It includes all the necessary tools to ensure a smooth deployment process while minimizing potential downtime associated with new technology integration.
Advanced Silicon's Sensing Integrated Circuits are engineered for exceptional performance in diverse sensor systems, ranging from photo-diode based detectors to low-noise pixel arrays for photon detection. These ICs leverage multi-channel configurations with integrated per channel analog-to-digital conversion, providing superb noise specs, ADC linearity, and resolution. This makes them ideal for use in digital X-ray systems, CT and PET scanners, particle detectors, and even fingerprint detection solutions. By enhancing integration and performance while minimizing size and power consumption, these products empower highly efficient and advanced sensor applications.
Laser Triangulation Sensors offered by Riftek Europe are designed for precise non-contact measurement and position checking. These sensors utilize blue and infrared lasers to measure dimensions and displacements ranging from 2 mm to 2.5 meters. The high frequency of 160 kHz sampling assures quick and accurate data capture with a measurement error as low as +/- 1 um. These sensors are versatile, suitable for a myriad of applications in various industries, from automotive to manufacturing, where precision measurements are critical. They provide robust performance even in demanding conditions due to their high-speed scanning capabilities. With their advanced laser technology, these sensors not only measure but also check run-outs, surface profiles, and deformations of components, providing comprehensive analysis for quality control and process optimization. Their integration into industrial setups enhances productivity and supports effective automation strategies.
ELFIS2 is a sophisticated visible light imaging ASIC designed to deliver superior performance under the extreme conditions typical in space. Known for its radiation hard design, it withstands both total ionizing dose (TID) and single event effects (SEU/SEL), ensuring dependable operation even when exposed to high radiation levels in outer space. This image sensor features HDR (High Dynamic Range) capabilities, which allow it to capture clear, contrast-rich images in environments with varying light intensities, without motion artifacts thanks to its Motion Artifact Free (MAF) technology. Additionally, its global shutter ensures that every pixel is exposed simultaneously, preventing distortion in high-speed imaging applications. Utilizing back-side illumination (BSI), the ELFIS2 achieves superior sensitivity and quantum efficiency, making it an ideal choice for challenging lighting conditions. This combination of advanced features makes the ELFIS2 particularly well-suited for scientific and space-based imaging applications requiring exacting standards.
Building upon advanced CMOS processes, this image sensor technology is tailored to meet the demands of high-resolution image capture with exceptional clarity and speed. It showcases the integration of sophisticated pixel architectures alongside cutting-edge analog-to-digital conversion techniques. These elements work in tandem to ensure outstanding image quality, making the technology ideal for applications like digital cameras, smartphones, and security cameras. The technology's core strength lies in its ability to deliver high dynamic range and low-light sensitivity, expanding its usability across different lighting conditions. It supports a wide array of pixel sizes and formats, allowing for customization based on specific application needs. Alongside these features, the technology provides efficient noise reduction and energy management, contributing to prolonged battery life and enhanced sensor performance. Moreover, the CMOS Image Sensor Technology benefits from sustained innovation and development, ensuring it remains at the forefront of imaging advancements. It is equipped with various supportive resources such as reference designs and application notes, which help integrate the sensors seamlessly into new products. This positions Tower Semiconductor's technology as a vital enabler for modern imaging devices where precision and detail are critical.
ZIA Image Signal Processing technology provides state-of-the-art solutions for optimizing image quality and enhancing vision-based systems. This technology is integral to applications requiring precise image analysis, such as surveillance cameras and automotive safety systems. It supports various image processing tasks, including de-noising, color correction, and sharpness enhancement, delivering superior visual output even under challenging conditions. ZIA's adaptable architecture supports integration into a range of devices, ensuring broad applicability across multiple sectors.
The MXL-LVDS-MIPI-RX is a high-frequency, low-power, low-cost, source-synchronous, Physical Layer that supports the MIPI® Alliance Standard for D-PHY and compatible with the TIA/EIA-644 LVDS standard. (Learn more about Mixel’s MIPI ecosystem at Mixel MIPI Central which gives you access to Mixel’s best of class MIPI ecosystem supply chain partners.) The IP is configured as a MIPI slave and consists of 5 lanes: 1 Clock lane and 4 data lanes, which make it suitable for display serial interface applications (DSI). The High-Speed signals have a low voltage swing, while Low-Power signals have large swing. High-Speed functions are used for High-Speed Data traffic while low power functions are mostly used for control.
The BlueLynx Chiplet Interconnect system provides an advanced die-to-die connectivity solution designed to meet the demanding needs of diverse packaging configurations. This interconnect solution stands out for its compliance with recognized industry standards like UCIe and BoW, while offering unparalleled customization to fit specific applications and workloads. By enabling seamless connection to on-die buses and Networks-on-Chip (NoCs) through standards such as AMBA, AXI, ACE, and CHI, BlueLynx facilitates faster and cost-effective integration processes. The BlueLynx system is distinguished by its adaptive architecture that maximizes silicon utilization, ensuring high bandwidth along with low latency and power efficiency. Designed for scalability, the system supports a remarkable range of data rates from 2 to 40+ Gb/s, with an impressive bandwidth density of 15+ Tbps/mm. It also provides support for multiple serialization and deserialization ratios, ensuring flexibility for various packaging methods, from 2D to 3D applications. Compatible with numerous process nodes, including today’s most advanced nodes like 3nm and 4nm, BlueLynx offers a progressive pathway for chiplet designers aiming to streamline transitions from traditional SoCs to advanced chiplet architectures.
The MXL-LVDS-DPHY-DSI-TX is a combo PHY that consists of a high-frequency low-power, low-cost, source-synchronous, Physical Layer supporting the MIPI® Alliance Standard for D-PHY and a high performance 4-channel LVDS Serializer implemented using digital CMOS technology. (Learn more about Mixel’s MIPI ecosystem at Mixel MIPI Central which gives you access to Mixel’s best of class MIPI ecosystem supply chain partners.) In LVDS mode, both the serial and parallel data are organized into 4 channels. The parallel data is 7 bits wide per channel. The input clock is 25MHz to 150MHz. The serializer is highly integrated and requires no external components. The circuit is designed in a modular fashion and desensitized to process variations. This facilitates process migration, and results in a robust design.
In smartphone applications, ActLight’s Dynamic PhotoDetector (DPD) offers a step-change in photodetection technology, enhancing features such as proximity sensing and ambient light detection. This high sensitivity sensor, with its ability to detect subtle changes in light, supports functions like automatic screen brightness adjustments and energy-efficient proximity sensing. Designed for low voltage operation, the DPD effectively reduces power consumption, making it suitable for high-performance phones without increasing thermal load. The technology also facilitates innovative applications like 3D imaging and eye-tracking, adding richness to user experiences in gaming and augmented reality.
The MVWS4000 series integrates three crucial environmental sensing modalities—humidity, pressure, and temperature—into a single, compact package. These digital sensors are built on a proprietary Silicon Carbide platform, offering enhanced reliability and energy efficiency. Ideal for OEM and battery-operated devices, they bridge the gap between performance and power conservation.\n\nThese sensors exhibit remarkable accuracy, with 1.5% for humidity, 1.0 hPa for pressure, and 0.3°C for temperature. Crafted for long-term stability, the sensors are suitable for demanding, resource-constrained applications. Their compact dimensions, along with a desirable operating range, make them versatile for various implementations.\n\nGiven their design for reduced energy use, these sensors are excellent for portable and embedded systems. With digital interfaces, including I2C and SPI, they offer flexible integration paths for manufacturers aiming to meet varied application requirements in industrial, consumer, medical, and automotive sectors.
The MXL4254A is a silicon proven Quad Gigabit SerDes implemented in digital CMOS technology. Each of the four channels supports data rate up to 4.25 Gbps. It is compatible with router-backplane links, PCI Express, SATA, RapidIO, 10 Gbps Ethernet (XAUI), FibreChannel, SFI-5, SPI-5, and other communication applications.
This technology leverages the strengths of both Silicon-Germanium (SiGe) and BiCMOS processes to produce highly efficient RF solutions. SiGe BiCMOS technology is particularly advantageous for its performance in high-frequency applications, making it ideal for RF and wireless communication technologies. The integration of BiCMOS allows for the combination of bipolar and CMOS transistors on a single chip, enhancing the capacity for analog signal processing alongside digital logic. The SiGe component offers a significant advantage in terms of speed and frequency, ensuring high-performance operation suitable for cutting-edge communication standards. By merging these technologies, the process achieves low-noise amplification and superior linearity, which are crucial for advanced telecommunication systems and data transfer technologies. This makes it a go-to choice for various industries, including aerospace and defense, where precision signal processing is paramount. Additionally, the technology comes with a comprehensive suite of design kits that facilitate seamless integration with existing systems. These kits provide everything from standard libraries to bespoke IP configurations, helping customers tailor their solutions efficiently and effectively. The flexibility and performance it offers make this technology a standout in the realm of RF engineering, addressing the needs of high-speed communication infrastructure.
Certus Semiconductor's Analog I/O offerings bring ultra-low capacitance and robust ESD protection to the forefront. These solutions are crafted to handle extreme voltage conditions while securing signal integrity by minimizing impedance mismatches. Key features include integrated ESD and power clamps, support for broad RF frequencies, and the ability to handle signal swings below ground. Ideal for high-speed RF applications, these Analog I/Os provide superior protection and performance, aligning with the most demanding circuit requirements.
The MXL-SR-LVDS is a high performance 4-channel LVDS Serializer implemented using digital CMOS technology. Both the serial and parallel data are organized into four channels. The parallel data width is programmable, and the input clock is 25MHz to 165MHz. The Serializer is highly integrated and requires no external components. It employs optional pre-emphasis to enable transmission over a longer distance while achieving low BER. The circuit is designed in a modular fashion and desensitized to process variations. This facilitates process migration, and results in a robust design.
ActLight's Dynamic PhotoDetector (DPD) enhances the capabilities of smart rings with state-of-the-art photodetection technology. Designed for compact form factors, this sensor excels in environments where space is limited, such as inside a ring. Its operation at low voltages significantly extends battery life, crucial for the discreet and continual monitoring required by smart rings. The DPD's high sensitivity ensures accurate biometric readings, crucial for tracking vital signs like heart rate and activity levels without relying on additional amplification. This technology supports users in their wellness journeys by delivering reliable health data in a sleek, user-friendly device.
ParkerVision's Energy Sampling Technology is a state-of-the-art solution in RF receiver design. It focuses on achieving high sensitivity and dynamic range by implementing energy sampling techniques. This technology is critical for modern wireless communication systems, allowing devices to maintain optimal signal reception while consuming less power. Its advanced sampling methods enable superior performance in diverse applications, making it a preferred choice for enabling efficient wireless connectivity. The energy sampling technology is rooted in ParkerVision's expertise in matched filter concepts. By applying these concepts, the technology enhances the modulation flexibility of RF systems, thereby expanding its utility across a wide range of wireless devices. This capability not only supports devices in maintaining consistent connectivity but also extends their battery life due to its low energy requirements. Overall, ParkerVision's energy sampling technology is a testament to their innovative approach in RF solutions. It stands as an integral part of their portfolio, addressing the industry's demand for high-performance and energy-efficient wireless technology solutions.
EnSilica's eSi-Analog offerings encompass a wide range of silicon-proven analog IP solutions designed to meet the demands of competitive markets where analog capabilities are essential for system performance. These solutions stand out for their high performance and easy integration, which help reduce time-to-market and costs while supporting successful custom ASIC and SoC devices.\n\nThe eSi-Analog IP portfolio includes critical components such as oscillators, SMPSs, LDOs, temperature sensors, PLLs, and ultra-low-power radio elements like sub-GHz BLE, NFC Tag Front-end, and sensor interfaces. These blocks are optimized for low power consumption and high resolution, making them suitable for a wide array of applications.\n\nBy offering flexible configuration options, eSi-Analog IP allows customization according to specific project needs, leveraging EnSilica's expertise in full SoC integration. This facilitates the development of complex designs across multiple process nodes, ensuring customers achieve their design goals efficiently and effectively.
The MXL-DS-LVDS is a high performance 4-channel LVDS Deserializer implemented using digital CMOS technology. Both the serial and parallel data are organized into four channels. The parallel data can be 7 or 10 bits wide per channel. The input clock is 25MHz to 165MHz. The De-serializer is highly integrated and requires no external components. Great care was taken to insure matching between the Data and Clock channels to maximize the deserializer margin. The circuit is designed in a modular fashion and desensitized to process variations. This facilitates process migration, and results in a robust design.
ActLight's Dynamic PhotoDetector (DPD) for wearables is specifically engineered to revolutionize light sensing in compact devices. This innovative sensor operates on low voltage, significantly extending the battery life of wearable devices such as fitness trackers and smartwatches. The DPD's high sensitivity allows it to detect even minimal light changes without the need for bulky amplifiers, enabling a sleek design and energy-efficient operation. This sensor supports advanced health monitoring features, providing precise heart rate and activity measurements, thereby empowering users with real-time wellness insights. Its compact size makes it ideal for integration into space-constrained wearable devices without compromising performance.
The Dynamic PhotoDetector (DPD) tailored for hearables by ActLight offers an unparalleled advancement in light sensing technology for compact audio devices. Designed for energy efficiency, the DPD operates at low voltages which not only conserves battery life but also maintains peak performance, crucial for modern, on-the-go audio wearables. With its high sensitivity, the sensor excels in detecting minute changes in light conditions, thus ensuring consistent and reliable biometric data acquisition. This makes it particularly advantageous for heart rate and activity monitoring in hearables, enhancing the overall user experience with precise health tracking capabilities.
The Heimdall platform is engineered for applications requiring low-resolution image processing and quick interpretation. It integrates image signal processing capabilities into a compact design, perfect for IoT applications where space and power consumption are constraints. The platform supports various image-related tasks including object detection and movement tracking. With a core image sensor of 64x64 pixels, Heimdall is optimized for environments where minor details are less critical. This makes it ideal for motion sensing, smart lighting, and automation systems where the understanding of space occupancy or movement is essential. The platform's energy-efficient design, capable of integrating energy-harvesting technology, ensures sustainable operation in remote and hard-to-reach locations. By providing rapid image interpretation, Heimdall supports quick decision-making processes crucial for smart infrastructure and security applications.
The AFX010x Product Family by SCALINX consists of advanced Analog Front Ends (AFEs) ideal for data-acquisition systems, particularly for benchtop and portable applications. This product family is designed to cater to needs for low power consumption, high signal fidelity, broad bandwidth, and impressive sampling rates. Each Integrated Circuit (IC) features four independent channels, each equipped with a programmable input capacitance, a single-ended to differential-output programmable gain amplifier (PGA), an offset DAC, an ADC, and a digital processor. Housed in a standard 12 mm × 12 mm, 196-ball BGA, these products benefit from the proprietary SCCORE™ technology, which facilitates a compact PCB footprint and energy savings of up to 50%. The AFEs offer a maximum sampling rate of 5 GS/s and maintain consistency with applications requiring high resolution data acquisition, such as USB and PC-based oscilloscopes and non-destructive testing systems. By featuring on-chip clock synthesizers and voltage references, they ensure superior performance with power consumption rates as low as 425 mW per channel. Moreover, these AFEs boast a range of programmable gains and bandwidths, adaptable over wide bipolar voltage ranges, making them extremely flexible to suit various signal processing needs. Their pin-to-pin compatibility across different models simplifies upgrades and customization, maximizing flexibility and adaptability in diverse technological contexts.
The RF Front-End for Satellite Reception Beam-Forming by Bruco Integrated Circuits is a sophisticated solution designed to enhance satellite communication. This technology is integral in focusing multiple signal beams to and from the satellite, ensuring optimal communication link strength and clarity. By leveraging advanced beam-forming capabilities, it offers exceptional signal reception and transmission, critical for both commercial and defense satellite applications. Incorporating advanced analog and RF designs, this front-end module is engineered to operate efficiently across multiple frequencies. It provides robust performance against interference commonly encountered in satellite operations, while maintaining high linearity and low noise levels. Designed with the latest semiconductor technologies, it is well-suited for integration into modern satellite systems that demand reliability and high efficiency. The module's versatility in beam-forming allows for dynamic allocation and redirection of signal beams, thus supporting wide-area coverage and high-capacity data throughput. This is particularly beneficial for satellite communications that require adaptable and scalable operations in varying atmospheric and terrestrial conditions.
The SMS Fully Integrated Gigabit Ethernet & Fibre Channel Transceiver Core is an advanced solution designed for high-speed data transmission applications. This core incorporates all necessary high-speed serial link blocks, such as high-speed drivers and PLL architectures, which enable precise clock recovery and signal synchronization.\n\nThe transceiver core is compliant with IEEE 802.3z for Gigabit Ethernet and is also compatible with Fibre Channel standards, ensuring robust performance across a variety of network settings. It features an inherently full-duplex operation, providing simultaneous bidirectional data paths through its 10-bit controller interface. This enhances communication efficiency and overall data throughput.\n\nParticularly suited for networks requiring low jitter and high-speed operation, this transceiver includes proprietary technology for superior jitter performance and noise immunity. Its implementation in low-cost, low-power CMOS further provides a cost-effective and energy-efficient solution for high-speed networking requirements.
GUC’s Mixed-Signal Front-End is designed to address the complex requirements of modern analog signal processing applications. This product blends both analog and digital circuits to efficiently manage and convert real-world signals into data that digital systems can process. Targeted at sectors where precise signal interpretation and processing are critical, this mixed-signal solution enhances the capability of system designs. The solution integrates various components necessary for complete signal chain management, ensuring minimal signal distortion and high-accuracy outcomes. It supports a wide range of applications from communications to industrial automation where data integrity is paramount. By compacting multiple functionalities into a single, optimized front-end, the solution reduces overall system complexity and cost. This Mixed-Signal Front-End is pivotal in systems where sensor data must be accurately translated into actionable digital information. Its versatile design supports developments in fields with stringent requirements for latency and performance, showcasing GUC’s commitment to engineering excellence in semiconductor solutions. By simplifying signal processing tasks, it extends the capabilities of integrated systems, setting new standards in analog processing technologies.
The Camera ISP for HDR from BTREE enhances image processing capabilities for devices requiring high dynamic range (HDR) imaging. This technology integrates sophisticated algorithms to capture more detail in both bright and dark areas of an image, making it ideal for photography in challenging lighting conditions. Its ability to manage varying light intensities efficiently ensures superior output quality in cameras and other visual capture devices. The IP's functionality facilitates the enhancement of image clarity and depth, crucial for professional photography equipment and advanced consumer electronics. Additionally, the ISP can significantly reduce noise and improve color accuracy, which are pivotal in delivering high-quality visual content. The ISP's design focuses on optimizing power consumption without compromising on performance, making it a favorable choice for mobile devices and other digital imaging applications. Engineers working with the Camera ISP for HDR can expect a versatile tool that integrates seamlessly into existing architectures, providing a robust platform to build superior imaging solutions. The IPS's excellence is underscored by its adoption in various high-end imaging applications, setting industry benchmarks for image processing capabilities.
The Analog IP offered by Key ASIC encompasses a broad range of components meant to satisfy the intricate needs of mixed-signal designs. Their audio codec IPs support 16, 18, and 24-bit sigma-delta architectures primarily for applications requiring high-fidelity audio processing. The voice codec supports both 14-bit ADC and 16-bit DAC at 48 KHz, ensuring crystal-clear audio for communication devices. For data conversion needs, their offerings include ADCs ranging from 6-bit to 12-bit, with various sampling rates that cater to different performance levels, from slow ADC tasks to high-speed functionality at 200 MHz. Their DACs, similarly spanning 8-bit to 12-bit, are engineered to handle a range of frequencies, making them ideal for applications in digital communications and signal processing. Other significant components include a programmable gain amplifier (PGA) with a 46 MHz bandwidth, bandgap references, DC-DC converters, voltage regulators, and power-on-reset elements. These IPs can be leveraged across consumer electronics and advanced data acquisition systems to enhance system efficiency and minimize power consumption.
Certus Semiconductor's RF/Analog solutions encompass state-of-the-art ultra-low power wireless front-end technologies. These include silicon-proven RF IPs, full-chip RF products, and next-generation wireless IPs. The RF IPs are compatible with various process nodes, offering comprehensive transceiver solutions integrated with digital controls and modern power management strategies. Specialized for wireless applications, these products include transceivers for LTE, Wifi, GNSS, and Zigbee, each meticulously designed to enhance communication reliability and efficiency in any technology node, from 12nm to 65nm processes.
The Intelligent Sensor and Power Management Platform (ISP) by IQonIC Works is engineered for sensor-driven and IoT applications that demand refined power management and efficient processing. This platform-centric solution aims to accelerate the design lifecycle, offering an integrated suite of pre-validated IP and design blocks that minimize time-to-market and development costs. ISP focuses on three core design challenges: power management, sensor interface, and software-programmable processing. It provides a comprehensive energy management framework supporting a variety of operational modes, from ultra-low power to active processing states. The platform's capability extends to harvesting and managing energy effectively, which is crucial for battery-operated or energy-scarce environments. The platform's versatility allows for scalable solutions, supporting a wide array of I/O components and processing cores such as RISC-V and ARM Cortex-M variants. It facilitates seamless expansion through industry-standard interfaces, allowing the integration of third-party components and enabling sophisticated communication and control features, ensuring adaptability and robustness in dynamically changing application environments.
CURIOUS Corporation's Column A/D Converter for Image Sensors stands as an essential component in modern imaging systems, offering precise analog-to-digital conversion for image data. This component is specifically designed to handle high-speed imaging requirements, ensuring that image data is converted accurately and efficiently. With its sophisticated architecture, it enhances the processing capabilities of imaging systems. The converter is tailored for use in image sensors that demand superior A/D conversion performance. It effectively bridges the analog-digital gap in image processing, thereby optimizing the output quality of various imaging applications. Its capability to process high-resolution data ensures that it meets the rigorous demands of digital imaging, maintaining the fidelity and clarity of the images captured. Engineered for robustness and reliability, this A/D converter is adept at handling complex signal processing tasks inherent to image sensors. It ensures that the imaging systems deliver uncompromised performance, making it indispensable for high-grade digital cameras and related imaging devices.
These interface conditioners are designed to work with industrial sensors that use Wheatstone bridges, amplifying and processing their minute differential voltages for subsequent digital transmission. Granite SemiCom's design integrates advanced features such as digital signal transmission over an I2C interface and easy programming and debugging capabilities. Ideal for remote or distributed sensor systems, these conditioners support various configurations that enhance communication security and data integrity across potentially vast distances.
The ADQ7DC model is a highly sophisticated digitizer designed for both single and dual-channel applications. It stands out with its impressive sampling rate of up to 10 GSPS, complemented by 14-bit resolution, enabling exquisite detail and clarity in the captured signals. Its input bandwidth reaches up to 3 GHz, catering to demanding applications that require high-speed and high-fidelity data processing. This digitizer is suitable for high-performance data acquisition, making it a preferred choice for industries that rely on critical signal detection and analysis.
SCALINX's ADX series are cutting-edge Continuous-Time Delta-Sigma (ΔΣ) Analog-to-Digital Converters known for their high-resolution and high-speed performance. These ADCs are distinguished by their capability to handle extensive bandwidth while maintaining optimal signal fidelity and noise performance. The ADX line comprises a variety of models tailored to different performance benchmarks, ranging from 80MS/s with 16-bit resolution to 1.25GS/s with 10-bit resolution. Designed with the proprietary SCCORE™ technology, the ADX converters offer remarkable flexibility for integration into a variety of process nodes, ensuring adaptability across a wide range of BiCMOS and advanced CMOS processes. Each model, such as the ADX40M16B65LP, guarantees silicon-proven efficiency, underscoring SCALINX’s commitment to delivering reliable and optimized analog solutions. The ADX converters are engineered to support extensive industrial applications, particularly where precision and speed are critical. Features such as wide bandwidth handling capabilities, along with advanced on-chip calibration, provide significant advantages in test and measurement, communications, and defense sectors where robust performance is paramount.
This product serves as a bridge for high-definition audio and video signals, converting them from DisplayPort to MIPI-DSI interfaces. It is ideally suited for integrating into the next generation of mobile devices and VR headsets, requiring efficient and low-latency signal processing. The integration enables these devices to deliver ultra-clear, crisp visuals coupled with high-quality sound, essential for immersive experiences. The converter's ability to handle multiple lanes of data transmission ensures that all connected devices can maintain high performance without compromising quality. It supports a variety of screen resolutions, making it highly versatile for cutting-edge display technologies. This flexibility solidifies its position as a vital component in high-end consumer electronics and mobile hardware. Moreover, the efficiency of this conversion technology translates into longer battery life for portable devices. By optimizing the power usage during signal conversion, it contributes to the device's overall energy efficiency, providing users with extended use without frequent recharging.
The ATEK367P4 is a phase shifter that operates in the 2 to 4 GHz band, offering a phase range of 0 to 375 degrees. It has a low loss of 3 dB, providing flexibility and precision in phase adjustments. With its ability to manage an IP1dB of 20 dBm, the phase shifter is well-suited for advanced RF and microwave applications requiring compact integration and high reliability.
With extensive experience in Hall Sensor technology, SystematIC Design has developed multiple application-specific Hall IC products for precise current sensing under various frequencies. This Hall sensing approach facilitates complete integration with standard CMOS technology, ensuring significant accuracy with high bandwidth. The sensor incorporates magnetic field sensors alongside programmable readout amplifiers to create a highly integrated current sensor IC. Having low offset and high gain accuracy, these sensors excel in isolating properties, which makes them an ideal choice for consumer and industrial electronics applications.
The EPC Gen2/ISO 18000-6 Analog Front End developed by RADLogic serves as an integral part of RFID systems. It is engineered to work in perfect harmony with digital protocol engines, enhancing the efficiency of RFID communication. This analog front end plays a crucial role in converting the received analog signals into digital ones that can be processed further by the digital protocols. One of its key tasks is to manage the signal integrity and ensure that noise levels are kept to a minimum, a critical factor for successful RFID operations. The front end is built with precision to accommodate various signal conditions, allowing for stable performance even in challenging environments. Its design emphasizes high sensitivity, which improves the overall read range and accuracy of RFID readers. With a focus on reliability, the analog front end is capable of operating under diverse conditions without degradation. It supports seamless integration into existing systems, ensuring that the users can upgrade their RFID capabilities without any significant overhauls. This component, much like RADLogic’s broader portfolio, is designed to meet demanding industry standards, reflecting their robust experience in developing RFID technologies.
This ultra-wideband (UWB) device operates with a carrier frequency around 6 GHz and bandwidth approximately 500 MHz. It offers superior performance with minimal interference, even in environments where other wireless technologies like Wi-Fi and Bluetooth might struggle. Engineered for high precision, it is particularly effective in ranging and location-based services, which require the accurate determination of distances. The increase in bandwidth allows for better resistance to multipath effects, ensuring robust operation in a variety of settings.
Designed for versatile application in integrated circuit design, this ultra-low power analog front-end supports a wide supply voltage range from 1.8V to 5.0V. It is engineered to provide seamless integration and exceptional performance in both high and low-frequency scenarios. Ideal for IoT devices and smart home applications, this product ensures superior analog signal processing efficiency with minimal power consumption. Enhanced with precision, it is equipped to handle various environmental conditions, affording high reliability and quality signal conversion. The design supports extreme flexibility in adapting to different product specifications without compromising on performance or efficiency.
It is comprised of a high resolution Mixed-signal Front-End and of a dense Power and energy Computation Engine to achieve at the system-level a class accuracy as high as 0.1% (class accuracy of the product is 0.05%) over a range up to 1/10,000.
It is comprised of a high resolution Mixed-signal Front-End and of a dense Power and energy Computation Engine to achieve at the system-level a class accuracy as high as 0.1% (class accuracy of the product is 0.05%) over a range up to 1/10,000.
It is comprised of a high resolution Mixed-signal Front-End and of a dense Power and energy Computation Engine to achieve at the system-level a class accuracy as high as 0.1% (class accuracy of the product is 0.05%) over a range up to 1/10,000.
Join the world's most advanced semiconductor IP marketplace!
It's free, and you'll get all the tools you need to discover IP, meet vendors and manage your IP workflow!
No credit card or payment details required.
Join the world's most advanced AI-powered semiconductor IP marketplace!
It's free, and you'll get all the tools you need to advertise and discover semiconductor IP, keep up-to-date with the latest semiconductor news and more!
Plus we'll send you our free weekly report on the semiconductor industry and the latest IP launches!