All IPs > Analog & Mixed Signal > Analog Filter
In the realm of semiconductor IPs, Analog Filters play a crucial role in the precise manipulation and enhancement of signals. These IPs are integral to a myriad of applications, from improving audio clarity in electronic devices to ensuring the integrity of data transmission in communication systems. As the demand for refined signal processing increases, the need for high-performance analog filters becomes more pronounced.
Analog filters are designed to selectively allow certain frequencies to pass while attenuating others, thereby improving the signal-to-noise ratio and safeguarding the performance of electronic systems. They are essential in applications such as audio processing, where specific frequency bands need to be isolated or suppressed to achieve the desired sound quality. In communication systems, analog filters ensure that data is transmitted with minimal interference and distortion, thus enhancing the reliability and efficiency of the systems.
In Silicon Hub's Analog Filter category, you will find a comprehensive range of semiconductor IPs tailored to meet varied industry needs. Whether you are developing consumer electronics, industrial equipment, or telecommunications systems, our analog filter IPs provide the necessary tools to achieve optimal signal processing. These IPs support various filter types, including low-pass, high-pass, band-pass, and notch filters, each designed to cater to specific frequency shaping requirements.
Explore our curated selection of analog filter semiconductor IPs and discover solutions that offer precision, efficiency, and robustness. Our IPs are engineered to integrate seamlessly into your designs, providing the performance and reliability needed to compete in today’s technology-driven market. Trust Silicon Hub to be your partner in bringing clarity and efficiency to your signal processing undertakings.
The ePHY-5616 delivers data rates from 1 to 56Gbps across technology nodes of 16nm and 12nm. Designed for a diverse range of applications, this product offers superior BER and low latency, making it ideal for enterprise equipment like routers, switches, and network interface cards. The ePHY-5616 employs a highly configurable DSP-based receiver architecture designed to manage various insertion loss scenarios, from 10dB up to over 35dB. This ensures robust and reliable data transfer across multiple setups.
The C100 is a highly integrated SoC designed for IoT applications, boasting efficient control and connectivity features. It is powered by an enhanced 32-bit RISC-V CPU running at up to 1.5GHz, making it capable of tackling demanding processing tasks while maintaining low power consumption. The inclusion of embedded RAM and ROM further enriches its computational prowess and operational efficiency. Equipped with integrated Wi-Fi, the C100 facilitates seamless wireless communication, making it ideal for varied IoT applications. It supports multiple types of transmission interfaces and features key components such as an ADC and LDO, enhancing its versatility. The C100 also offers built-in temperature sensors, providing higher integration levels for simplified product designs across security systems, smart homes, toys, healthcare, and more. Aiming to offer a compact form factor without compromising on performance, the C100 is engineered to help developers rapidly prototype and bring to market devices that are safe, stable, and efficient. Whether for audio, video, or edge computing tasks, this single-chip solution embodies the essence of Chipchain's commitment to pioneering in the IoT domain.
Our range of sensing integrated circuits caters to both photonic and capacitive detection needs. These ICs are designed to simplify the complexity of system design and minimize risks associated with their implementation. Whether dealing with basic photo-diode array detection or sophisticated low-noise photon detection solutions, our analog front ends are engineered to support a wide range of applications. Charge sensors in this series are equipped with multi-channel A-to-D conversion, setting a high bar in noise performance, ADC linearity, and resolution. These innovations are particularly beneficial in medical imaging, like digital X-ray panels, and other scanning technologies such as CT and PET scanners. Fingerprint detection and particle detection also benefit from the robust capabilities of these sensing ICs. Additionally, our capacitive sensing ICs cater to touch screen interfaces, providing high sensitivity along with excellent signal interference rejection. These features are vital for robust performance across varying screen formats and are critical in applications such as interactive digital displays and rugged touch-based systems.
ISPido represents a fully configurable RTL Image Signal Processing Pipeline, adhering to the AMBA AXI4 standards and tailored through the AXI4-LITE protocol for seamless integration with systems such as RISC-V. This advanced pipeline supports a variety of image processing functions like defective pixel correction, color filter interpolation using the Malvar-Cutler algorithm, and auto-white balance, among others. Designed to handle resolutions up to 7680x7680, ISPido provides compatibility for both 4K and 8K video systems, with support for 8, 10, or 12-bit depth inputs. Each module within this pipeline can be fine-tuned to fit specific requirements, making it a versatile choice for adapting to various imaging needs. The architecture's compatibility with flexible standards ensures robust performance and adaptability in diverse applications, from consumer electronics to professional-grade imaging solutions. Through its compact design, ISPido optimizes area and energy efficiency, providing high-quality image processing while keeping hardware demands low. This makes it suitable for battery-operated devices where power efficiency is crucial, without sacrificing the processing power needed for high-resolution outputs.
EnSilica’s eSi-Analog suite offers a broad array of Analog IP solutions essential for integrating analog functions into custom ASIC and SoC devices. Proven across various process nodes, these solutions are renowned for their performance, power efficiency, and adaptability to customer specifications, thereby expediting time-to-market and lowering costs. With an extensive range of easy-to-integrate IPs, eSi-Analog encompasses high-performance blocks like oscillators, SMPSs, PLLs, LDOs, and more, each optimized for low power consumption and high resolution. The flexibility of this IP suite allows for adaptation to various application needs, supporting industries as diverse as automotive and healthcare with critical analog capabilities. Specialized in enabling SoC platforms with robust analog interfaces, this IP package features components like temperature sensors and ultra-low power radios. The solutions in eSi-Analog are designed to integrate seamlessly across major foundry technologies, offering a competitive edge for customers seeking to enhance system performance with reliable analog solutions.
The CC-205 Wideband CMOS Rectifier stands out for its wide frequency rectification range, effectively working from 6 MHz to 5.8 GHz. This rectifier is capable of handling input power signals from -18 dBm up to +33 dBm, whilst maintaining impressive conversion efficiency between 40% to 90%. Without the need for a matching network, it directly interfaces with antennas, facilitating efficient power transfer. Its design includes a low S11 return loss of -40 dB, ensuring optimal power reception and usability in applications requiring broad frequency operation.
Capable of handling data rates from 1 to 112Gbps, the ePHY-11207 is a powerful solution designed for 7nm node technologies. It is specifically tailored for environments requiring ultra-low latency and robust error correction capabilities, making it a perfect fit for high-performance data center and 5G network applications. The ePHY-11207 integrates an advanced DSP-based receiver that ensures adaptability to various signaling conditions and insertion loss scenarios, therefore boosting operational reliability across complex systems.
Thermal oxide or SiO2 is a pivotal insulating film utilized in semiconductor devices, serving functions as both ‘field oxide’ and ‘gate oxide’. NanoSILICON, Inc. provides robust thermal oxide processing services using silicon wafers oxidized in high-temperature furnaces ranging from 800°C to 1050°C. The process ensures high purity and low defects, leveraging quartz tubes that provide a stable, high-temperature environment to produce high-density, high-breakdown voltage films. The dry oxidation process involves a reaction of silicon with oxygen to form SiO2, characterized by slow growth but resulting in a high-density layer ideal for isolation purposes. Conversely, the wet oxidation process engages steam, enabling rapid growth of the oxide layer even at lower temperatures, suitable for creating thicker oxides. This flexibility ensures that NanoSILICON can cater to a variety of requirements for different semiconductor applications. NanoSILICON ensures batch thickness uniformity and an impressive degree of thickness accuracy within wafers. Their use of equipment such as the Nanometrics 210 guarantees precise measurement and adherence to specific industry standards. This focus on meticulous quality control assures that the thermal oxides produced meet stringent electrical and physical specifications necessary for reliable device performance.
The WDR Core provides an advanced approach to wide dynamic range imaging by controlling image tone curves automatically based on scene analysis. This core is adept at ensuring that both shadows and highlights are appropriately compensated, thus maintaining image contrast and true color fidelity without the reliance on frame memory. Automatic adjustments extend the dynamic range of captured images, providing detailed correction in overexposed and underexposed areas. This capability is vital for environments with variable lighting conditions where traditional gamma corrections might introduce inaccuracies or unnatural visual effects. The core focuses on enhancing the user experience by delivering detailed and balanced images across diverse scenarios. Its versatility is particularly useful in applications like surveillance, where clarity across a range of light levels is critical, and in consumer electronics that require high-quality imaging in varying illumination.
The ePHY-5607 stands out for its PPA-optimized configuration, offering data rates from 1 to 56Gbps targeting the 7nm technology node. This IP is engineered for data center applications including routers, switches, and AI storage solutions. With an emphasis on superior BER and robust clock data recovery, the ePHY-5607 ensures efficient handling of high-speed data traffic. This product's distinctive feature set includes rapid temperature tracking and multi-reference clock configurations, which provide enhanced adaptability in fluctuating environments.
Akronic offers a robust suite of analog and mixed-signal IC solutions that cater to the demands of modern telecommunications and radar transceiver radios. In these designs, a plethora of analog and digital building blocks are expertly integrated to ensure optimal performance across various applications. Their expertise includes the development of low-pass filters using advanced techniques like Leapfrog and Gm-C based architectures, capable of supporting high-frequency cut-offs over 1GHz. The company excels in base-band functionality, where they provide solutions for bandgap, voltage references, and current generators. Their gain-control operations support both linear-in-dB and stepped configurations, adding to their designs' versatility. Furthermore, their integrated circuit solutions feature high-speed ADCs and DACs, with advanced switched-capacitor and current source configurations to ensure precision. In frequency synthesis, Akronic offers solutions ranging from fractional to integer-N phase-locked loops (PLLs) with advanced prescalers and loop filters, ensuring system flexibility and precision. With a focus on achieving seamless integration, their ICs incorporate complex band functions and signal converters to meet diverse system needs.
The mixed-signal front-end IP from GUC is crafted to handle analog signal processing tasks efficiently. Tailored for applications in AI, HPC, and major networking functions, this IP ensures seamless integration with digital components. By utilizing GUC's proprietary design techniques, it offers enhanced precision and reduced noise, making it a vital component of modern integrated circuit systems.
The 1.8V to 5.0V Analog Front End designed by Actt focuses on low-power operations suitable for various applications demanding energy efficiency. It encapsulates advanced circuit technologies to deliver precise analog signal processing, optimized for interfacing with both sensors and actuators. This analog front end ensures high-performance signal amplification with minimal distortion. Its broad operating voltage range from 1.8V to 5.0V makes it versatile for integration into multiple electronics platforms, adapting well in environments varying in power supply configurations. Leveraging design maturity, this component excels in maintaining signal integrity across diverse conditions while offering robust support for both analog signals and digital conversion requirements, enhancing its utility in smart applications.
Specialized for frequency selectivity needs, the ATEK890P4 presents as a high-pass tunable filter delivering optimized performance between 1 and 1.95 GHz. Featuring a compact insertion loss of 2 dB and impressive rejection bandwidths of up to 55 dBm, it ensures robust attenuation of unwanted low-frequency components. It seamlessly integrates into systems requiring precision tuning while reducing interference and enhancing bandwidth utilization. The 4x4mm QFN package allows for easy implementation within limited-space and dense circuit requirements, suiting various modular applications. This filter is particularly valuable in RF infrastructure, including cellular base stations or satellite communications, where clear, undistorted signal propagation is essential for seamless operational efficacy.
The ATEK884P5 is a tunable band-pass filter designed for RF applications that require stringent frequency control across a range from 1 to 7.5 GHz. This device ensures minimal signal distortion with an insertion loss of 11 dB and achieves rejection levels up to 40 dBc, which are vital for clear signal reception. It is crafted to deliver a tailored frequency response, improving overall system performance by eliminating undesired noise and enhancing signal quality. The ATEK884P5 support environments demanding precise frequency tuning, ensuring robust application adaptability in demanding RF environments. Ideal for use in various RF applications, especially telecommunications and broadcasting systems, this filter aids in managing the precision and fidelity of signal processing operations. Its durability and efficiency offer key advantages in modern wireless communication infrastructure.
Join the world's most advanced semiconductor IP marketplace!
It's free, and you'll get all the tools you need to discover IP, meet vendors and manage your IP workflow!
Join the world's most advanced AI-powered semiconductor IP marketplace!
It's free, and you'll get all the tools you need to advertise and discover semiconductor IP, keep up-to-date with the latest semiconductor news and more!
Plus we'll send you our free weekly report on the semiconductor industry and the latest IP launches!